171 research outputs found

    Electron transport properties and collision cross sections in C_2F_4

    Get PDF
    We have measured the electron drift velocity, longitudinal diffusion coefficient, and ionization coefficient in tetrafluoroethene (C_2F_4). Using these data and the results of ab initio calculations of the elastic, momentum-transfer, and neutral-excitation cross sections, along with measurements of the partial ionization cross sections, we have performed a swarm analysis in order to construct a self-consistent set of electron impact cross sections for C_2F_4. The swarm analysis consists of solutions to Boltzmann’s equation for electrons in C_2F_4 for values of E/N⩽500Td and direct Monte Carlo simulation of electron transport in C_2F_4 for 500Td⩽E/N⩽2000Td. We present an analysis and discussion of the sensitivity of cross sections derived from swarm data to uncertainties in the electron transport measurements. We also discuss the failure of the two-term spherical harmonic solution to Boltzmann’s equation for E/N>500Td, which necessitated the use of Monte Carlo simulations for high values of E/N

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Effects of Payena dasyphylla (Miq.) on hyaluronidase enzyme activity and metalloproteinases protein expressions in interleukin-1beta stimulated human chondrocytes cells

    Get PDF
    Background: Hyaluronidases have been found as the target enzymes in the development of osteoarthritis (OA) disease. While there is still no curative treatment for this disease, recent studies on the treatment of OA were focused on the effectiveness of natural products which are expected to improve the symptoms with minimal side effects. The aim of this study was to screen selected Malaysian plants on their anti-hyaluronidase activity as well as to evaluate the active plant and its derived fractions on its potential anti-arthritic and antioxidant activities.Methods: A total of 20 methanolic crude extracts (bark and leaf) from ten different plants were screened using a colorimetric hyaluronidase enzymatic assay. The active plant extract (Payena dasyphylla) was then studied for its hyaluronidase inhibitory activity in the interleukin-1β (IL-1β) stimulated human chondrocytes cell line (NHAC-kn) using zymography method. The Payena dasyphylla methanolic bark extract was then fractionated into several fractions in where the ethyl acetate (EA) fraction was evaluated for its inhibitory effects on the HYAL1 and HYAL2 gene expressions using reverse transcription-polymerase chain reaction (RT-PCR) technique. While the MMP-3 and MMP-13 protein expressions were evaluated using western blot method. The phenolic and flavonoid contents of the three fractions as well as the antioxidant property of the EA fraction were also evaluated.Results: Bark extract of Payena dasyphylla (100 μg/ml) showed the highest inhibitory activity against bovine testicular hyaluronidase with 91.63%. The plant extract also inhibited hyaluronidase expression in the cultured human chondrocyte cells in response to IL-1β (100 ng/ml). Similarly, treatment with Payena dasyphylla ethyl acetate (EA) fraction (100 μg/ml) inhibited the HYAL1 and HYAL2 mRNA gene expressions as well as MMP-3 and MMP-13 protein expression in a dose dependent manner. Payena dasyphylla EA fraction has demonstrated the highest amount of phenolic and flavonoid content with 168.62 ± 10.93 mg GAE/g and 95.96 ± 2.96 mg RE/g respectively as compared to water and hexane fractions. In addition, the Payena dasyphylla EA fraction showed strong antioxidant activity with IC50 value of 11.64 ± 1.69 μg/mL.Conclusion: These findings have shown that Payena dasyphylla might contained potential phenolic compounds that inhibiting the key enzyme in osteoarthritis development, which is the hyaluronidase enzyme through interruption of HYAL1 and HYAL1 gene expressions. The degradation of cartilage could also be inhibited by the plant through suppression of MMP-3 and MMP-13 protein expressions. We also reported that the inhibitory effect of Payena dasyphylla on hyaluronidase activity and expression might be due to its anti-oxidant property

    The use of income information of census enumeration area as a proxy for the household income in a household survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some of the Census Enumeration Areas' (CEA) information may help planning the sample of population studies but it can also be used for some analyses that require information that is more difficult to obtain at the individual or household level, such as income. This paper verifies if the income information of CEA can be used as a proxy for household income in a household survey.</p> <p>Methods</p> <p>A population-based survey conducted from January to December 2003 obtained data from a probabilistic sample of 1,734 households of Niterói, Rio de Janeiro, Brazil. Uniform semi-association models were adjusted in order to obtain information about the agreement/disagreement structure of data. The distribution of nutritional status categories of the population of Niterói according to income quintiles was performed using both CEA- and household-level income measures and then compared using Wald statistics for homogeneity. Body mass index was calculated using body mass and stature data measured in the households and then used to define nutritional status categories according to the World Health Organization. All estimates and statistics were calculated accounting for the structural information of the sample design and a significance level lower than 5% was adopted.</p> <p>Results</p> <p>The classification of households in the quintiles of household income was associated with the classification of these households in the quintiles of CEA income. The distribution of the nutritional status categories in all income quintiles did not differ significantly according to the source of income information (household or CEA) used in the definition of quintiles.</p> <p>Conclusion</p> <p>The structure of agreement/disagreement between quintiles of the household's monthly per capita income and quintiles of the head-of-household's mean nominal monthly income of the CEA, as well as the results produced by these measures when they were associated with the nutritional status of the population, showed that the CEA's income information can be used when income information at the individual or household levels is not available.</p

    Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms

    Get PDF
    The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation
    corecore