102 research outputs found

    Decaffeinated Green Coffee Bean Extract Attenuates Diet-Induced Obesity and Insulin Resistance in Mice

    Get PDF
    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N=48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue

    Evaluation of dietary selenium, vitamin C and E as the multi-antioxidants on the methylmercury intoxicated mice based on mercury bioaccumulation, antioxidant enzyme activity, lipid peroxidation and mitochondrial oxidative stress

    Get PDF
    Author's accepted version (postprint).This is an Accepted Manuscript of an article published by Elsevier in Chemosphere on 18/01/2021.Available online: https://www.sciencedirect.com/science/article/pii/S0045653521001429?via%3DihubMercury (Hg) in high exposures can be a potent life threatening heavy metal that bioaccumulate in aquatic food-chain mainly as organic methylmercury (MeHg). In this regard, fish and seafood consumptions could be the primary sources of MeHg exposure for human and fish-eating animals. The objective of the present study was to elucidate the effects of dietary supplementation of some antioxidants on induced mercury toxicity in mice model. In this study, a 30-day long investigation has been conducted to evaluate the dietary effect of selenium (Se) in combination with vitamin C and vitamin E on methylmercury induced toxicity in mice. Total 54 mice fed the diets with three levels of Hg (0, 50 or 500 μg kg−1) and two levels of Se in combination with vitamin C and E (Se: 0, 2 mg kg−1; vitamin C: 0, 400 mg kg−1; vitamin E: 0, 200 mg kg−1) in triplicates. The results show that Hg accumulated in blood and different tissues such as muscle, liver and kidney tissues of mice on dose dependent manner. The bioaccumulation pattern of dietary Hg, in decreasing order, kidney > liver > muscle > blood. Superoxide dismutase levels in blood serum showed no significant differences in mice fed the diets. However, dietary antioxidants significantly reduced the levels of thiobarbituric acid reactive substances in mice fed the mercury containing diets. Cytochrome c oxidase enzyme activities showed no significant differences as the mercury level increases in liver and kidney tissues of mice. Kaplan-Meier curve showed a dose- and time-dependent survivability of mice. Cumulative survival rate of Hg intoxicated mice fed the antioxidant supplemented diets were increased during the experimental period. Overall, the results showed that dietary Se, vitamin C and vitamin E had no effect on reducing the mercury bioaccumulation in tissues but reduced the serum lipid peroxidation as well as prolonged the cumulative survival rate in terms of high Hg exposures in mice.acceptedVersio

    Cinchonine Prevents High-Fat-Diet-Induced Obesity through Downregulation of Adipogenesis and Adipose Inflammation

    Get PDF
    Cinchonine (C19H22N2O) is a natural compound of Cinchona bark. Although cinchonine's antiplatelet effect has been reported in the previous study, antiobesity effect of cinchonine has never been studied. The main objective of this study was to investigate whether cinchonine reduces high-fat-diet- (HFD-) induced adipogenesis and inflammation in the epididymal fat tissues of mice and to explore the underlying mechanisms involved in these reductions. HFD-fed mice treated with 0.05% dietary cinchonine for 10 weeks had reduced body weight gain (−38%), visceral fat-pad weights (−26%), and plasma levels of triglyceride, free fatty acids, total cholesterol, and glucose compared with mice fed with the HFD. Moreover, cinchonine significantly reversed HFD-induced downregulations of WNT10b and galanin-mediated signaling molecules and key adipogenic genes in the epididymal adipose tissues of mice. Cinchonine also attenuated the HFD-induced upregulation of proinflammatory cytokines by inhibiting toll-like-receptor-2- (TLR2-) and TLR4-mediated signaling cascades in the adipose tissue of mice. Our findings suggest that dietary cinchonine with its effects on adipogenesis and inflammation may have a potential benefit in preventing obesity

    Antilipogenic and Anti-Inflammatory Activities of Codonopsis lanceolata in Mice Hepatic Tissues after Chronic Ethanol Feeding

    Get PDF
    This study evaluated the antilipogenic and anti-inflammatory effects of Codonopsis lanceolata (C. lanceolata) root extract in mice with alcohol-induced fatty liver and elucidated its underlying molecular mechanisms. Ethanol was introduced into the liquid diet by mixing it with distilled water at 5% (wt/v), providing 36% of the energy, for nine weeks. Among the three different fractions prepared from the C. lanceolata root, the C. lanceolata methanol extract (CME) exhibited the most remarkable attenuation of alcohol-induced fatty liver with respect to various parameters such as hepatic free fatty acid concentration, body weight loss, and hepatic accumulations of triglyceride and cholesterol. The hepatic gene and protein expression levels were analysed via RT-PCR and Western blotting, respectively. CME feeding significantly restored the ethanol-induced downregulation of the adiponectin receptor (adipoR) 1 and of adipoR2, along with their downstream molecules. Furthermore, the study data showed that CME feeding dramatically reversed ethanol-induced hepatic upregulation of toll-like receptor- (TLR-) mediated signaling cascade molecules. These results indicate that the beneficial effects of CME against alcoholic fatty livers of mice appear to be with adenosine- and adiponectin-mediated regulation of hepatic steatosis and TLR-mediated modulation of hepatic proinflammatory responses

    Artemisia iwayomogi

    Get PDF
    The objective of the present study was to determine whether Artemisia iwayomogi (AI) extract reduces visceral fat accumulation and obesity-related biomarkers in mice fed a high-fat diet (HFD), and if so, whether these effects are exerted by modulation of the expression of genes associated with adipogenesis and inflammation. AI extract supplementation for 11 weeks significantly prevented HFD-induced increments in body weight, visceral adiposity, adipocyte hypertrophy, and plasma levels of lipids and leptin. Additionally, AI extract supplementation resulted in downregulation of adipogenic transcription factors (PPARγ2 and C/EBPα) and their target genes (CD36, aP2, and FAS) in epididymal adipose tissue compared to the HFD alone. The AI extract effectively reversed the HFD-induced elevations in plasma glucose and insulin levels and the homeostasis model assessment of insulin resistance index. Furthermore, the extract significantly decreased gene expression of proinflammatory cytokines (TNFα, MCP1, IL-6, IFNα, and INFβ) in epididymal adipose tissue and reduced plasma levels of TNFα and MCP1 as compared to HFD alone. In conclusion, these results suggest that AI extract may prevent HFD-induced obesity and metabolic disorders, probably by downregulating the expression of genes related to adipogenesis and inflammation in visceral adipose tissue

    GABA Neuronal Deletion of Shank3 Exons 14–16 in Mice Suppresses Striatal Excitatory Synaptic Input and Induces Social and Locomotor Abnormalities

    Get PDF
    Shank3 is an excitatory postsynaptic scaffolding protein implicated in multiple brain disorders, including autism spectrum disorders (ASD) and Phelan-McDermid syndrome (PMS). Although previous neurobiological studies on Shank3 and Shank3-mutant mice have revealed diverse roles of Shank3 in the regulation of synaptic, neuronal and brain functions, whether Shank3 expression in specific cell types distinctly contributes to mouse phenotypes remains largely unclear. In the present study, we generated two Shank3-mutant mouse lines (exons 14–16) carrying global and GABA neuron-specific deletions and characterized their electrophysiological and behavioral phenotypes. These mouse lines show similar decreases in excitatory synaptic input onto dorsolateral striatal neurons. In addition, the abnormal social and locomotor behaviors observed in global Shank3-mutant mice are strongly mimicked by GABA neuron-specific Shank3-mutant mice, whereas the repetitive and anxiety-like behaviors are only partially mimicked. These results suggest that GABAergic Shank3 (exons 14–16) deletion has strong influences on striatal excitatory synaptic transmission and social and locomotor behaviors in mice

    The case for strategic international alliances to harness nutritional genomics for public and personal health

    Get PDF
    Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countrie

    Changes and achievements of environmental and water resources policies

    No full text

    Corticotropin releasing factor-overexpressing mouse is a model of chronic stress-induced muscle atrophy.

    No full text
    Chronic stress and continually high glucocorticoid levels can induce muscle atrophy. Unfortunately, there is a lack of appropriate animal models for stress-induced muscle atrophy research. Corticotropin releasing factor-overexpressing (CRF-OE) mice are a transgenic model of chronic stress that exhibit increased plasma corticosterone levels and Cushing's syndrome; however, the skeletal muscle pathology of the CRF-OE mouse has not been well studied. We observed that male, 19-week-old CRF-OE mice had significantly lower skeletal muscle mass, average cross-sectional myofiber area, and total muscle protein content than their wild type (WT) littermates. Muscle function determined by grip strength, wire-hang, and open field tests showed that 19-week-old male CRF-OE mice had impaired physical ability. Additionally, the skeletal muscles of CRF-mice exhibited decreased expression of factors involved in the IGF-1/AKT/mTOR protein synthesis pathway and increased ubiquitin proteasome pathway activity compared to the WT control mice. In conclusion, 19-week-old CRF-OE mice display numerous features of muscle atrophy and thus serve as a model for investigating stress-induced muscle atrophy and interventions to target the deleterious effects of stress on skeletal muscle
    corecore