23 research outputs found

    Nanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering

    Get PDF
    Bone tissue engineering has come on the scene to overcome the difficulties of the current treatment strategies. By combining biomaterials, active agents and growth factors, cells and nanomaterials, tissue engineering makes it possible to create new structures that enhance bone regeneration. Herein, hyaluronic acid and alginate were used to create biologically active hydrogels, and montmorillonite nanoclay was used to reinforce and stabilize them. The developed scaffolds were found to be biocompatible and osteogenic with mMSCs in vitro, especially those reinforced with the nanoclay, and allowed mineralization even in the absence of differentiation media. Moreover, an in vivo investigation was performed to establish the potential of the hydrogels to mend bone and act as cell-carriers and delivery platforms for SDF-1. Scaffolds embedded with SDF-1 exhibited the highest percentages of bone regeneration as well as of angiogenesis, which confirms the suitability of the scaffolds for bone. Although there are a number of obstacles to triumph over, these bioengineered structures showed potential as future bone regeneration treatments

    The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk-Graphene Hydrogels

    Get PDF
    Biomaterials capable of transmitting signals over longer distances than those in rigid electronics can open new opportunities for humanity by mimicking the way tissues propagate information. For seamless mirroring of the human body, they also have to display conformability to its curvilinear architecture, as well as, reproducing native-like mechanical and electrical properties combined with the ability to self-heal on demand like native organs and tissues. Along these lines, a multifunctional composite is developed by mixing silk fibroin and reduced graphene oxide. The material is coined "CareGum" and capitalizes on a phenolic glue to facilitate sacrificial and hierarchical hydrogen bonds. The hierarchal bonding scheme gives rise to high mechanical toughness, record-breaking elongation capacity of approximate to 25 000%, excellent conformability to arbitrary and complex surfaces, 3D printability, a tenfold increase in electrical conductivity, and a fourfold increase in Young's modulus compared to its pristine counterpart. By taking advantage of these unique properties, a durable and self-healing bionic glove is developed for hand gesture sensing and sign translation. Indeed, CareGum is a new advanced material with promising applications in fields like cyborganics, bionics, soft robotics, human-machine interfaces, 3D-printed electronics, and flexible bioelectronics.Peer reviewe

    Flexible Electronics: A Protein‐Based, Water‐Insoluble, and Bendable Polymer with Ionic Conductivity: A Roadmap for Flexible and Green Electronics (Adv. Sci. 5/2019)

    Get PDF
    Contains fulltext : 215371.pdf (publisher's version ) (Open Access)Proteins present an ecofriendly alternative to many of the synthetic components currently used in electronics. They can therefore in combination with flexibility and electroactivity uncover a range of new opportunities in the field of flexible and green electronics. In this study, silk-based ionic conductors are turned into stable thin films by embedding them with 2D nanoclay platelets. More specifically, this material is utilized to develop a flexible and ecofriendly motion-sensitive touchscreen device. The display-like sensor can readily transmit light, is easy to recycle and can monitor the motion of almost any part of the human body. It also displays a significantly lower sheet resistance during bending and stretching regimes than the values typically reported for conventional metallic-based conductors, and remains fully operational after mechanical endurance testing. Moreover, it can operate at high frequencies in the kilohertz (kHz) range under both normal and bending modes. Notably, our new technology is available through a simple one-step manufacturing technique and can therefore easily be extended to large-scale fabrication of electronic devices

    A Protein-Based, Water-Insoluble, and Bendable Polymer with Ionic Conductivity: A Roadmap for Flexible and Green Electronics

    No full text
    Contains fulltext : 215371.pdf (publisher's version ) (Open Access)Proteins present an ecofriendly alternative to many of the synthetic components currently used in electronics. They can therefore in combination with flexibility and electroactivity uncover a range of new opportunities in the field of flexible and green electronics. In this study, silk-based ionic conductors are turned into stable thin films by embedding them with 2D nanoclay platelets. More specifically, this material is utilized to develop a flexible and ecofriendly motion-sensitive touchscreen device. The display-like sensor can readily transmit light, is easy to recycle and can monitor the motion of almost any part of the human body. It also displays a significantly lower sheet resistance during bending and stretching regimes than the values typically reported for conventional metallic-based conductors, and remains fully operational after mechanical endurance testing. Moreover, it can operate at high frequencies in the kilohertz (kHz) range under both normal and bending modes. Notably, our new technology is available through a simple one-step manufacturing technique and can therefore easily be extended to large-scale fabrication of electronic devices

    In vitro and ex vivo modeling of enteric bacterial infections

    No full text
    ABSTRACTEnteric bacterial infections contribute substantially to global disease burden and mortality, particularly in the developing world. In vitro 2D monolayer cultures have provided critical insights into the fundamental virulence mechanisms of a multitude of pathogens, including Salmonella enterica serovars Typhimurium and Typhi, Vibrio cholerae, Shigella spp., Escherichia coli and Campylobacter jejuni, which have led to the identification of novel targets for antimicrobial therapy and vaccines. In recent years, the arsenal of experimental systems to study intestinal infections has been expanded by a multitude of more complex models, which have allowed to evaluate the effects of additional physiological and biological parameters on infectivity. Organoids recapitulate the cellular complexity of the human intestinal epithelium while 3D bioengineered scaffolds and microphysiological devices allow to emulate oxygen gradients, flow and peristalsis, as well as the formation and maintenance of stable and physiologically relevant microbial diversity. Additionally, advancements in ex vivo cultures and intravital imaging have opened new possibilities to study the effects of enteric pathogens on fluid secretion, barrier integrity and immune cell surveillance in the intact intestine. This review aims to present a balanced and updated overview of current intestinal in vitro and ex vivo methods for modeling of enteric bacterial infections. We conclude that the different paradigms are complements rather than replacements and their combined use promises to further our understanding of host-microbe interactions and their impacts on intestinal health

    A New Era for Cyborg Science Is Emerging: The Promise of Cyborganic Beings

    No full text
    Item does not contain fulltextLiving flesh, hacked beyond known biological borders, and sophisticated machineries, made by humans, are currently being united to address some of the impending challenges in medicine. Imagine biological systems made from smart biomaterials with the capacity to operate like smart machines to regulate insulin production in diabetic patients, or cardiac patches that can monitor and release important biological factors, on demand, to optimize the mending of broken hearts. It sounds like something from the realm of science fiction; however, this big gap between the real world and the world of fantasy and fiction is slowly being bridged. This piece sheds a much-needed light on this emerging area, as this futuristic concept is gaining momentum, at a speed, that soon will ignite a paradigm shift in disease management and the healthcare sector as an entirety

    Hacking Human Beings with Machine Biology to Increase Lifespan

    No full text
    Item does not contain fulltextImagine a world where machines can program cells to deliver therapeutics in a remote-controlled, time-specific, and targeted manner. Or, what if physicians could collect data continuously to establish intimate links between therapy and disease progression? Such machine biology systems could empower physicians beyond imagination and give rise to personalized treatments
    corecore