65 research outputs found

    Differential Association of Uncoupling Protein 2 Polymorphisms with Pattern Identification among Korean Stroke Patients: A Diagnostic System in Traditional Korean Medicine

    Get PDF
    Uncoupling protein 2 (UCP2), a mitochondrial protein present in many organs and cell types, is known to dissipate the proton gradient formed by the electron transport chain. Its function is correlated with predictive parameters, such as obesity, diabetes, and metabolic syndromes. We analyzed the distribution of UCP2 polymorphisms in stroke patients diagnosed with one of the following four stroke subtypes based on the TKM standard pattern identification (PI): Qi-deficiency (QD), Dampness and Phlegm (D&P), Yin-deficiency (YD), and Fire and Heat (F&D). We studied a total of 1,786 stroke patients (397/QD, 645/D&P, 223/YD, and 522/F&D, 586/normal). Genotyping for the G-1957A, G-866A and A55V UCP2 polymorphisms was performed using the TaqMan. G-866A and A55V were significantly associated with the D&P and H&F subtypes. The frequency of subjects with the A allele of G-866A was significantly lower than the frequency of subjects with the GG type. The A55V polymorphism was also shown similar effect with G-866A in the dominant model. In contrast, no SNPs were shown to be associated with the QD or YD subtypes in this study. These results showed that the G-866A and A55V UCP2 polymorphisms may be genetic factors for specific PI types among Korean stroke patients

    Self-catalytic growth of elementary semiconductor nanowires with controlled morphology and crystallographic orientation

    Get PDF
    While the orientation-dependent properties of semiconductor nanowires have been theoretically predicted, their study has long been overlooked in many fields owing to the limits to controlling the crystallographic growth direction of nanowires (NWs). We present here the orientation-controlled growth of single-crystalline germanium (Ge) NWs using a self-catalytic low-pressure chemical vapor deposition process. By adjusting the growth temperature, the orientation of growth direction in GeNWs was selectively controlled to the ⟨110⟩, ⟨112⟩, or ⟨111⟩ directions on the same substrate. The NWs with different growth directions exhibit distinct morphological features, allowing control of the NW morphology from uniform NWs to nanoribbon structures. Significantly, the VLS-based self-catalytic growth of the ⟨111⟩ oriented GeNW suggests that NW growth is possible for single elementary materials even without an appropriate external catalyst. Furthermore, these findings could provide opportunities to investigate the orientation-dependent properties of semiconductor NWs

    OGLE-2016-BLG-1227L: A Wide-separation Planet from a Very Short-timescale Microlensing Event

    Get PDF
    We present the analysis of the microlensing event OGLE-2016-BLG-1227. The light curve of this short-duration event appears to be a single-lens event affected by severe finite-source effects. Analysis of the light curve based on single-lens single-source (1L1S) modeling yields very small values of the event timescale, t_E ∼ 3.5 days, and the angular Einstein radius, θ_E ∼ 0.009 mas, making the lens a candidate of a free-floating planet. Close inspection reveals that the 1L1S solution leaves small residuals with amplitude ΔI ≲ 0.03 mag. We find that the residuals are explained by the existence of an additional widely-separated heavier lens component, indicating that the lens is a wide-separation planetary system rather than a free-floating planet. From Bayesian analysis, it is estimated that the planet has a mass of _p = 0.79^(+1.30)_(−0.39) M_J and it is orbiting a low-mass host star with a mass of M_(host) = 0.10+0.17−0.05 M_⊙ located with a projected separation of a_ = 3.4^(+2.1)_(−1.0) au. The planetary system is located in the Galactic bulge with a line-of-sight separation from the source star of D_(LS) = 1.21^(+0.96)_(−0.63) kpc. The event shows that there are a range of deviations in the signatures of host stars for apparently isolated planetary lensing events and that it is possible to identify a host even when a deviation is subtle

    Efficacies of the new Paclitaxel-eluting Coroflex Please™ Stent in percutaneous coronary intervention; comparison of efficacy between Coroflex Please™ and Taxus™ (ECO-PLEASANT) trial: study rationale and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous randomized trials have showed the superiority of Paclitaxel-eluting stent over bare metal stent in angiographic and clinical outcomes. Coroflex Please™ stent is a newly developed drug eluting stent using the Coroflex™ stent platform combined with the drug paclitaxel contained in a polymer coating. PECOPS I trial, one-arm observational study, showed that the clinical and angiographic outcomes of Coroflex Please™ stent were within the range of those of Taxus, the 1<sup>st </sup>generation paclitaxel-eluting stent (PES). However, there have been no studies directly comparing the Coroflex Please™ stent with the Taxus Liberte™ stent that is the newest version of Taxus. Therefore, prospective, randomized trial is required to demonstrate the non-inferiority of Coroflex Please™ stent compared with Taxus Liberte™ stent in a head-to-head manner.</p> <p>Methods</p> <p>In the comparison of Efficacy between COroflex PLEASe™ ANd Taxus™ stent(ECO-PLEASANT) trial, approximately 900 patients are being prospectively and randomly assigned to the either type of Coroflex Please™ stent and Taxus Liberte™ stent via web-based randomization. The primary endpoint is clinically driven target vessel revascularization at 9 months. The secondary endpoints include major cardiac adverse events, target vessel failure, stent thrombosis and angiographic efficacy endpoints.</p> <p>Discussion</p> <p>The ECO-PLEASANT trial is the study not yet performed to directly compare the efficacy and safety of the Coroflex Please™ versus Taxus Liberte™ stent. On the basis of this trial, we will be able to find out whether the Coroflex Please™ stent is non-inferior to Taxus Liberte™ stent or not.</p> <p>Trial registration</p> <p>ClinicalTrials.gov number, NCT00699543.</p

    Spectroscopic Mass and Host-star Metallicity Measurements for Newly Discovered Microlensing Planet OGLE-2018-BLG-0740Lb

    Full text link
    We report the discovery of the microlensing planet OGLE-2018-BLG-0740Lb. The planet is detected with a very strong signal of Δχ24630\Delta\chi^2\sim 4630, but the interpretation of the signal suffers from two types of degeneracies. One type is caused by the previously known close/wide degeneracy, and the other is caused by an ambiguity between two solutions, in which one solution requires to incorporate finite-source effects, while the other solution is consistent with a point-source interpretation. Although difficult to be firmly resolved based on only the photometric data, the degeneracy is resolved in strong favor of the point-source solution with the additional external information obtained from astrometric and spectroscopic observations. The small astrometric offset between the source and baseline object supports that the blend is the lens and this interpretation is further secured by the consistency of the spectroscopic distance estimate of the blend with the lensing parameters of the point-source solution. The estimated mass of the host is 1.0±0.1 M1.0\pm 0.1~M_\odot and the mass of the planet is 4.5±0.6 MJ4.5\pm 0.6~M_{\rm J} (close solution) or 4.8±0.6 MJ4.8\pm 0.6~M_{\rm J} (wide solution) and the lens is located at a distance of 3.2±0.53.2\pm 0.5~kpc. The bright nature of the lens, with I17.1I\sim 17.1 (V18.2V\sim 18.2), combined with its dominance of the observed flux suggest that radial-velocity (RV) follow-up observations of the lens can be done using high-resolution spectrometers mounted on large telescopes, e.g., VLT/ESPRESSO, and this can potentially not only measure the period and eccentricity of the planet but also probe for close-in planets. We estimate that the expected RV amplitude would be 60sini m s1\sim 60\sin i ~{\rm m~s}^{-1}.Comment: 12 pages, 11 figures, 4 table

    OGLE-2018-BLG-0022: First Prediction of an Astrometric Microlensing Signal from a Photometric Microlensing Event

    Full text link
    In this work, we present the analysis of the binary microlensing event OGLE-2018-BLG-0022 that is detected toward the Galactic bulge field. The dense and continuous coverage with the high-quality photometry data from ground-based observations combined with the space-based {\it Spitzer} observations of this long time-scale event enables us to uniquely determine the masses M1=0.40±0.05 MM_1=0.40 \pm 0.05~M_\odot and M2=0.13±0.01 MM_2=0.13\pm 0.01~M_\odot of the individual lens components. Because the lens-source relative parallax and the vector lens-source relative proper motion are unambiguously determined, we can likewise unambiguously predict the astrometric offset between the light centroid of the magnified images (as observed by the {\it Gaia} satellite) and the true position of the source. This prediction can be tested when the individual-epoch {\it Gaia} astrometric measurements are released.Comment: 10 pages, 10 figures, 4 table

    OGLE-2016-BLG-1227L: A Wide-separation Planet from a Very Short-timescale Microlensing Event

    Get PDF
    We present the analysis of the microlensing event OGLE-2016-BLG-1227. The light curve of this short-duration event appears to be a single-lens event affected by severe finite-source effects. Analysis of the light curve based on single-lens single-source (1L1S) modeling yields very small values of the event timescale, t_E ∼ 3.5 days, and the angular Einstein radius, θ_E ∼ 0.009 mas, making the lens a candidate of a free-floating planet. Close inspection reveals that the 1L1S solution leaves small residuals with amplitude ΔI ≲ 0.03 mag. We find that the residuals are explained by the existence of an additional widely-separated heavier lens component, indicating that the lens is a wide-separation planetary system rather than a free-floating planet. From Bayesian analysis, it is estimated that the planet has a mass of _p = 0.79^(+1.30)_(−0.39) M_J and it is orbiting a low-mass host star with a mass of M_(host) = 0.10+0.17−0.05 M_⊙ located with a projected separation of a_ = 3.4^(+2.1)_(−1.0) au. The planetary system is located in the Galactic bulge with a line-of-sight separation from the source star of D_(LS) = 1.21^(+0.96)_(−0.63) kpc. The event shows that there are a range of deviations in the signatures of host stars for apparently isolated planetary lensing events and that it is possible to identify a host even when a deviation is subtle
    corecore