57 research outputs found

    Direct observation of narrow electronic energy band formation in 2D molecular self-assembly

    Get PDF
    Surface-supported molecular overlayers have demonstrated versatility as platforms for fundamental research and a broad range of applications, from atomic-scale quantum phenomena to potential for electronic, optoelectronic and catalytic technologies. Here, we report a structural and electronic characterisation of self-assembled magnesium phthalocyanine (MgPc) mono and bilayers on the Ag(100) surface, via low-temperature scanning tunneling microscopy and spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), density functional theory (DFT) and tight-binding (TB) modeling. These crystalline close-packed molecular overlayers consist of a square lattice with a basis composed of a single, flat-adsorbed MgPc molecule. Remarkably, ARPES measurements at room temperature on the monolayer reveal a momentum-resolved, two-dimensional (2D) electronic energy band, 1.27 eV below the Fermi level, with a width of ∼20 meV. This 2D band results from in-plane hybridization of highest occupied molecular orbitals of adjacent, weakly interacting MgPc's, consistent with our TB model and with DFT-derived nearest-neighbor hopping energies. This work opens the door to quantitative characterisation – as well as control and harnessing – of subtle electronic interactions between molecules in functional organic nanofilms

    Crossover from 2D ferromagnetic insulator to wide bandgap quantum anomalous Hall insulator in ultra-thin MnBi2Te4

    Full text link
    Intrinsic magnetic topological insulators offer low disorder and large magnetic bandgaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the Quantum Anomalous Hall (QAH) effect and axion insulator phases have been realised. These observations occur at temperatures significantly lower than the Neel temperature of bulk MnBi2Te4, and measurement of the magnetic energy gap at the Dirac point in ultra-thin MnBi2Te4 has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verifying whether the gap is magnetic in the QAH phase. Here we utilise temperature dependent angle-resolved photoemission spectroscopy to study epitaxial ultra-thin MnBi2Te4. We directly observe a layer dependent crossover from a 2D ferromagnetic insulator with a bandgap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>100 meV) at 8 K in 3 and 5 SL MnBi2Te4. The QAH gap is confirmed to be magnetic in origin, as it abruptly diminishes with increasing temperature above 8 K. The direct observation of a large magnetic energy gap in the QAH phase of few-SL MnBi2Te4 is promising for further increasing the operating temperature of QAH materials

    Electronic bandstructure of in-plane ferroelectric van der Waals βIn2Se3\beta '-In_{2}Se_{3}

    Full text link
    Layered indium selenides (In2Se3In_{2}Se_{3}) have recently been discovered to host robust out-of-plane and in-plane ferroelectricity in the α\alpha and β\beta' phases, respectively. In this work, we utilise angle-resolved photoelectron spectroscopy to directly measure the electronic bandstructure of βIn2Se3\beta '-In_{2}Se_{3}, and compare to hybrid density functional theory (DFT) calculations. In agreement with DFT, we find the band structure is highly two-dimensional, with negligible dispersion along the c-axis. Due to n-type doping we are able to observe the conduction band minima, and directly measure the minimum indirect (0.97 eV) and direct (1.46 eV) bandgaps. We find the Fermi surface in the conduction band is characterized by anisotropic electron pockets with sharp in-plane dispersion about the M\overline{M} points, yielding effective masses of 0.21 m0m_{0} along KM\overline{KM} and 0.33 m0m_{0} along ΓM\overline{\Gamma M}. The measured band structure is well supported by hybrid density functional theory calculations. The highly two-dimensional (2D) bandstructure with moderate bandgap and small effective mass suggest that βIn2Se3\beta'-In_{2}Se_{3} is a potentially useful new van der Waals semiconductor. This together with its ferroelectricity makes it a viable material for high-mobility ferroelectric-photovoltaic devices, with applications in non-volatile memory switching and renewable energy technologies.Comment: 19 pages, 4 + 1 figures; typos corrected;added references; updated figures & discussion to reflect changes in mode

    Increasing the Rate of Magnesium Intercalation Underneath Epitaxial Graphene on 6H-SiC(0001)

    Full text link
    Magnesium intercalated 'quasi-freestanding' bilayer graphene on 6H-SiC(0001) (Mg-QFSBLG) has many favorable properties (e.g., highly n-type doped, relatively stable in ambient conditions). However, intercalation of Mg underneath monolayer graphene is challenging, requiring multiple intercalation steps. Here, we overcome these challenges and subsequently increase the rate of Mg intercalation by laser patterning (ablating) the graphene to form micron-sized discontinuities. We then use low energy electron diffraction to verify Mg-intercalation and conversion to Mg-QFSBLG, and X-ray photoelectron spectroscopy to determine the Mg intercalation rate for patterned and non-patterned samples. By modeling Mg intercalation with the Verhulst equation, we find that the intercalation rate increase for the patterned sample is 4.5±\pm1.7. Since the edge length of the patterned sample is \approx5.2 times that of the non-patterned sample, the model implies that the increased intercalation rate is proportional to the increase in edge length. Moreover, Mg intercalation likely begins at graphene discontinuities in pristine samples (not step edges or flat terraces), where the 2D-like crystal growth of Mg-silicide proceeds. Our laser patterning technique may enable the rapid intercalation of other atomic or molecular species, thereby expanding upon the library of intercalants used to modify the characteristics of graphene, or other 2D materials and heterostructures.Comment: 24 pages, 4 figure

    Quasi-free-standing AA-stacked bilayer graphene induced by calcium intercalation of the graphene-silicon carbide interface

    Full text link
    We study quasi-freestanding bilayer graphene on silicon carbide intercalated by calcium. The intercalation, and subsequent changes to the system, were investigated by low-energy electron diffraction, angle-resolved photoemission spectroscopy (ARPES) and density-functional theory (DFT). Calcium is found to intercalate only at the graphene-SiC interface, completely displacing the hydrogen terminating SiC. As a consequence, the system becomes highly n-doped. Comparison to DFT calculations shows that the band dispersion, as determined by ARPES, deviates from the band structure expected for Bernal-stacked bilayer graphene. Instead, the electronic structure closely matches AA-stacked bilayer graphene on Ca-terminated SiC, indicating a spontaneous transition from AB- to AA-stacked bilayer graphene following calcium intercalation of the underlying graphene-SiC interface.Comment: 14 pages, 3 figure

    Freestanding n-Doped Graphene via Intercalation of Calcium and Magnesium into the Buffer Layer - SiC(0001) Interface

    Full text link
    The intercalation of epitaxial graphene on SiC(0001) with Ca has been studied extensively, yet precisely where the Ca resides remains elusive. Furthermore, the intercalation of Mg underneath epitaxial graphene on SiC(0001) has not been reported. Here, we use low energy electron diffraction, x-ray photoelectron spectroscopy, secondary electron cut-off photoemission and scanning tunneling microscopy to elucidate the physical and electronic structure of both Ca- and Mg-intercalated epitaxial graphene on 6H-SiC(0001). We find that Ca intercalates underneath the buffer layer and bonds to the Si-terminated SiC surface, breaking the C-Si bonds of the buffer layer i.e. 'freestanding' the buffer layer to form Ca-intercalated quasi-freestanding bilayer graphene (Ca-QFSBLG). The situation is similar for the Mg-intercalation of epitaxial graphene on SiC(0001), where an ordered Mg-terminated reconstruction at the SiC surface and Mg bonds to the Si-terminated SiC surface are formed, resulting in Mg-intercalated quasi-freestanding bilayer graphene (Mg-QFSBLG). Ca-intercalation underneath the buffer layer has not been considered in previous studies of Ca-intercalated epitaxial graphene. Furthermore, we find no evidence that either Ca or Mg intercalates between graphene layers. However, we do find that both Ca-QFSBLG and Mg-QFSBLG exhibit very low workfunctions of 3.68 and 3.78 eV, respectively, indicating high n-type doping. Upon exposure to ambient conditions, we find Ca-QFSBLG degrades rapidly, whereas Mg-QFSBLG remains remarkably stable.Comment: 58 pages, 10 figures, 4 tables. Revised text and figure

    Low-Temperature Growth of Graphene on a Semiconductor

    Get PDF
    The industrial realization of graphene has so far been limited by challenges related to the quality, reproducibility, and high process temperatures required to manufacture graphene on suitable substrates. We demonstrate that epitaxial graphene can be grown on transition metal treated 6H-SiC(0001) surfaces, with an onset of graphitization starting around 450500C450-500^\circ\text{C}. From the chemical reaction between SiC and thin films of Fe or Ru, sp3\text{sp}^{3} carbon is liberated from the SiC crystal and converted to sp2\text{sp}^{2} carbon at the surface. The quality of the graphene is demonstrated using angle-resolved photoemission spectroscopy and low-energy electron diffraction. Furthermore, the orientation and placement of the graphene layers relative to the SiC substrate is verified using angle-resolved absorption spectroscopy and energy-dependent photoelectron spectroscopy, respectively. With subsequent thermal treatments to higher temperatures, a steerable diffusion of the metal layers into the bulk SiC is achieved. The result is graphene supported on magnetic silicide or optionally, directly on semiconductor, at temperatures ideal for further large-scale processing into graphene based device structures.Comment: 10 pages, 4 figures, 51 reference

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    A Simplified Method for Patterning Graphene on Dielectric Layers

    Get PDF
    The large-scale formation of patterned, quasi-freestanding graphene structures supported on a dielectric has so far been limited by the need to transfer the graphene onto a suitable substrate and contamination from the associated processing steps. We report μm scale, few-layer graphene structures formed at moderate temperatures (600–700 °C) and supported directly on an interfacial dielectric formed by oxidizing Si layers at the graphene/substrate interface. We show that the thickness of this underlying dielectric support can be tailored further by an additional Si intercalation of the graphene prior to oxidation. This produces quasi-freestanding, patterned graphene on dielectric SiO2 with a tunable thickness on demand, thus facilitating a new pathway to integrated graphene microelectronics
    corecore