276 research outputs found
Production of Radioactive Nuclides in Inverse Reaction Kinematics
Efficient production of short-lived radioactive isotopes in inverse reaction
kinematics is an important technique for various applications. It is
particularly interesting when the isotope of interest is only a few nucleons
away from a stable isotope. In this article production via charge exchange and
stripping reactions in combination with a magnetic separator is explored. The
relation between the separator transmission efficiency, the production yield,
and the choice of beam energy is discussed. The results of some exploratory
experiments will be presented.Comment: 10 pages, 4 figures, to be submitted to Nucl. Instr. and Met
Rock magnetism and palaeomagnetism of the Montalbano Jonico section (Italy): evidence for late diagenetic growth of greigite and implications for magnetostratigraphy
The Montalbano Jonico (MJ) section, cropping out in Southern Italy, represents a potential candidate to define the Lower/Middle Pleistocene boundary and it has been proposed as a suitable Global Stratotype Section and Point (GSSP) of the Ionian Stage (Middle Pleistocene). The MJ section is the only continuous benthic and planktonic δ18O on-land reference in the Mediterranean area for the Mid-Pleistocene transition, spanning an interval between about 1240 and 645 ka. Combined biostratigraphy and sapropel chronology, tephra stratigraphy and complete high-resolution benthic and planktonic foraminiferal stable oxygen isotope records already provide a firm chronostratigraphic framework for the MJ section. However, magnetostratigraphy was still required to precisely locate the Brunhes-Matuyama transition and to mark the GSSP for the Ionian stage. We carried out a palaeomagnetic study of a subsection (Ideale section) of the MJ composite section, sampling 61 oriented cores from 56 stratigraphic levels spread over a ca. 80-m-thick stratigraphic interval that correlates to the oxygen isotopic stage 19 and should therefore include the Brunhes-Matuyama reversal. The palaeomagnetic data indicate a stable and almost single-component natural remanent magnetization (NRM). A characteristic remanent magnetization (ChRM) was clearly identified by stepwise demagnetization of the NRM. The ChRM declination values vary around 0◦ and the ChRM inclination around the expected value (59◦) for a geocentric axial dipole field at the sampling locality. This result indicates that the section has been remagnetized during the Brunhes Chron. A preliminary study of 27 additional not azimuthally oriented hand samples, collected at various levels from other parts of the MJ composite section, indicates that all the samples are of normal polarity and demonstrates that the remagnetization is widespread across the whole exposed stratigraphic sequence. A series of specific rock magnetic techniques were then applied to investigate the nature of the main magnetic carrier in the study sediments, and they suggest that the main magnetic mineral in the MJ section is the iron sulphide greigite (Fe3S4). Scanning electron microscope observations and elemental microanalysis reveal that greigite occurs both as individual euhedral crystals and in iron sulphides aggregates filling voids in the clay matrix. Therefore, we infer that the remagnetization of the section is due to the late-diagenetic growth of greigite under reducing conditions, most likely resulting in the almost complete dissolution of the original magnetic minerals. Iron sulphide formation in the MJ section can be linked to migration of mineralized fluids. Our inferred timing of the remagnetization associated with greigite growth represents the longest remanence acquisition delay documented in greigite-bearing clays of the Italian peninsula so far
Differential cross section for neutron-proton bremsstrahlung
The neutron-proton bremsstrahlung process is known to be
sensitive to meson exchange currents in the nucleon-nucleon interaction. The
triply differential cross section for this reaction has been measured for the
first time at the Los Alamos Neutron Science Center, using an intense, pulsed
beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered
neutrons were observed at six angles between 12 and 32, and the
recoil protons were observed in coincidence at 12, 20, and
28 on the opposite side of the beam. Measurement of the neutron and
proton energies at known angles allows full kinematic reconstruction of each
event. The data are compared with predictions of two theoretical calculations,
based on relativistic soft-photon and non-relativistic potential models.Comment: 5 pages, 3 figure
Roper excitation in reactions
We calculate differential cross sections and the spin transfer coefficient
in the reaction for proton
bombarding energies from 1 to 10 GeV and invariant masses spanning
the region of the N(1440) Roper resonance. Two processes --
excitation in the -particle and Roper excitation in the proton -- are
included in an effective reaction model which was shown previously to reproduce
existing inclusive spectra. The present calculations demonstrate that these two
contributions can be clearly distinguished via , even under kinematic
conditions where cross sections alone exhibit no clear peak structure due to
the excitation of the Roper.Comment: 12 pages, 11 ps figures, Late
Allowed Gamow-Teller Excitations from the Ground State of 14N
Motivated by the proposed experiment , we study the
final states which can be reached via the allowed Gamow-Teller mechanism. Much
emphasis has been given in the past to the fact that the transition matrix
element from the ground state of to the ground state of is very close to zero, despite the fact that all
the quantum numbers are right for an allowed transition. We discuss this
problem, but, in particular, focus on the excitations to final states with
angular momenta and . We note that the summed strength to the
states, calculated with a wide variety of interactions, is
significantly larger than that to the final states.Comment: Submitted to Phys. Rev.
High-speed imaging of Strombolian explosions: The ejection velocity of pyroclasts
Explosive volcanic eruptions are defined as the violent ejection of gas and hot fragments from a vent in the Earth's crust. Knowledge of ejection velocity is crucial for understanding and modeling relevant physical processes of an eruption, and yet direct measurements are still a difficult task with largely variable results. Here we apply pioneering high-speed imaging to measure the ejection velocity of pyroclasts from Strombolian explosive eruptions with an unparalleled temporal resolution. Measured supersonic velocities, up to 405 m/s, are twice higher than previously reported for such eruptions. Individual Strombolian explosions include multiple, sub-second-lasting ejection pulses characterized by an exponential decay of velocity. When fitted with an empirical model from shock-tube experiments literature, this decay allows constraining the length of the pressurized gas pockets responsible for the ejection pulses. These results directly impact eruption modeling and related hazard assessment, as well as the interpretation of geophysical signals from monitoring networks
Complete Set of Polarization Transfer Observables for the Reaction at 296 MeV and 0
A complete set of polarization transfer observables has been measured for the
reaction at and . The total spin transfer and the observable
deduced from the measured polarization transfer observables indicate that
the spin--dipole resonance at has greater
strength than strength, which is consistent with recent experimental and
theoretical studies. The results also indicate a predominance of the spin-flip
and unnatural-parity transition strength in the continuum. The exchange tensor
interaction at a large momentum transfer of is
discussed.Comment: 4 pages, 4 figure
Scattering of Polarized Protons from 6,7-Li at 200 MeV
This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit
Gamow-Teller strength distributions for nuclei in pre-supernova stellar cores
Electron-capture and -decay of nuclei in the core of massive stars
play an important role in the stages leading to a type II supernova explosion.
Nuclei in the f-p shell are particularly important for these reactions in the
post Silicon-burning stage of a presupernova star. In this paper, we
characterise the energy distribution of the Gamow-Teller Giant Resonance (GTGR)
for mid-fp-shell nuclei in terms of a few shape parameters, using data obtained
from high energy, forward scattering (p,n) and (n,p) reactions. The energy of
the GTGR centroid is further generalised as function of nuclear
properties like mass number, isospin and other shell model properties of the
nucleus. Since a large fraction of the GT strength lies in the GTGR region, and
the GTGR is accessible for weak transitions taking place at energies relevant
to the cores of presupernova and collapsing stars, our results are relevant to
the study of important -capture and -decay rates of arbitrary,
neutron-rich, f-p shell nuclei in stellar cores. Using the observed GTGR and
Isobaric Analog States (IAS) energy systematics we compare the coupling
coefficients in the Bohr-Mottelson two particle interaction Hamiltonian for
different regions of the Isotope Table.Comment: Revtex, 28 pages +7 figures (PostScript Figures, uuencoded, filename:
Sutfigs.uu). If you have difficulty printing the figures, please contact
[email protected]. Accepted for publication in Phys. Rev. C, Nov 01,
199
- …