SCATTERING OF POLARIZED PROTONS FROM 6,7Li at 200 MeV J.R. Comfort and F. Irom Arizona State University, Tempe, Arizona 85281 > J. Rapaport and T.N. Taddeucci Ohio University, Athens, Ohio 43701 C.C. Foster, C.W. Glover, and P. Schwandt Indiana University Cyclotron Facility, Bloomington, Indiana 47405 > G. Wagner MPI, Heidelberg, West Germany Differential cross sections and analyzing powers for elastic and inelastic scattering of 200 MeV polarized protons from ^6Li and ^7Li have been measured in the angular range from 10° $<\theta_{\text{cm}}$ < 60° using the QDDM spectrometer. Typical spin up spectra at $\theta_{\text{lab}}=14^\circ$ degrees are shown in Figs. 1 and 2. Excitation of the 0^+ , T=1 state at 3.56 MeV in ^6Li is clearly seen. The transition from the $(1^+$, T=0) ground state to this 0^+ state has the same quantum numbers as the transition for the 15.11-MeV state in 12 C, but different amplitudes are expected to contribute. Angular distributions for each of the states seen in these 6,7 Li spectra are being extracted and analyzed. The angular distribution for the $(1/2^-, 1/2^+)$ state at 0.4776 MeV in 7 Li (Fig. 2) is expected to allow determination of M_1 strength. Optical model analysis of the elastic scattering data is in progress. Figure 1. 6Li(p,p') spectrum. Figure 2. 7Li(p,p') spectrum.