28 research outputs found

    An E9 multiplet of BPS states

    Full text link
    We construct an infinite E9 multiplet of BPS states for 11D supergravity. For each positive real root of E9 we obtain a BPS solution of 11D supergravity, or of its exotic counterparts, depending on two non-compact transverse space variables. All these solutions are related by U-dualities realised via E9 Weyl transformations in the regular embedding of E9 in E10, E10 in E11. In this way we recover the basic BPS solutions, namely the KK-wave, the M2 brane, the M5 brane and the KK6-monopole, as well as other solutions admitting eight longitudinal space dimensions. A novel technique of combining Weyl reflexions with compensating transformations allows the construction of many new BPS solutions, each of which can be mapped to a solution of a dual effective action of gravity coupled to a certain higher rank tensor field. For real roots of E10 which are not roots of E9, we obtain additional BPS solutions transcending 11D supergravity (as exemplified by the lowest level solution corresponding to the M9 brane). The relation between the dual formulation and the one in terms of the original 11D supergravity fields has significance beyond the realm of BPS solutions. We establish the link with the Geroch group of general relativity, and explain how the E9 duality transformations generalize the standard Hodge dualities to an infinite set of `non-closing dualities'.Comment: 76 pages, 6 figure

    G2 Dualities in D=5 Supergravity and Black Strings

    Full text link
    Five dimensional minimal supergravity dimensionally reduced on two commuting Killing directions gives rise to a G2 coset model. The symmetry group of the coset model can be used to generate new solutions by applying group transformations on a seed solution. We show that on a general solution the generators belonging to the Cartan and nilpotent subalgebras of G2 act as scaling and gauge transformations, respectively. The remaining generators of G2 form a sl(2,R)+sl(2,R) subalgebra that can be used to generate non-trivial charges. We use these generators to generalize the five dimensional Kerr string in a number of ways. In particular, we construct the spinning electric and spinning magnetic black strings of five dimensional minimal supergravity. We analyze physical properties of these black strings and study their thermodynamics. We also explore their relation to black rings.Comment: typos corrected (26 pages + appendices, 2 figures

    Finite and infinite-dimensional symmetries of pure N=2 supergravity in D=4

    Full text link
    We study the symmetries of pure N=2 supergravity in D=4. As is known, this theory reduced on one Killing vector is characterised by a non-linearly realised symmetry SU(2,1) which is a non-split real form of SL(3,C). We consider the BPS brane solutions of the theory preserving half of the supersymmetry and the action of SU(2,1) on them. Furthermore we provide evidence that the theory exhibits an underlying algebraic structure described by the Lorentzian Kac-Moody group SU(2,1)^{+++}. This evidence arises both from the correspondence between the bosonic space-time fields of N=2 supergravity in D=4 and a one-parameter sigma-model based on the hyperbolic group SU(2,1)^{++}, as well as from the fact that the structure of BPS brane solutions is neatly encoded in SU(2,1)^{+++}. As a nice by-product of our analysis, we obtain a regular embedding of the Kac-Moody algebra su(2,1)^{+++} in e_{11} based on brane physics.Comment: 70 pages, final version published in JHE

    Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl

    No full text
    The present study is aiming to explore the effect of 4-Hydroxy-6-methyl-3-(3-quinolin-8-yl-acryloyl)-pyran-2-one (HMQP) and 3-[3-(4-Dimethylamino-phenyl)-acryloyl]-4-hydroxy-6-methyl-pyran-2-one (DMPHP) on mild steel (MS) corrosion in acid solution (1 M HCl). The compound was tested at various concentrations (0.001–1 mM) and four temperatures (298, 308, 318, and 328 K) to determine the optimal concentration and temperature range for the best corrosion inhibiting effect. In evaluating the inhibition efficiency, weight loss measurement, potentiodynamic polarization measurement (PDP), electrochemical impedance spectroscopy, SEM/EDS and theoretical methods were used. The inhibition efficiencies increase with increase in concentration and decreases with temperature. The maximum inhibition efficiency was found 90% and 85.4% at 298 K in the presence of 1 mM of DMPHP and HMQP respectively. The experimental adsorption data obeyed the Langmuir isotherm model. The polarization parameters suggest that DMPHP and HMQP are mixed type inhibitors. The results of the EIS study suggest that these compounds inhibit corrosion by adsorption mechanism. A good correlation between theoretical and experimental results was obtained.Scopu
    corecore