10 research outputs found

    Dynamics of electrophysiological (dys)functional brain networks

    No full text
    En tant que systĂšme complexe, le cerveau traite de maniĂšre flexible les informations grĂące Ă  une reconfiguration dynamique des rĂ©seaux neuronaux sur une Ă©chelle de temps de l’ordre de la milliseconde. Un objectif majeur en neurosciences est de dĂ©crire l'organisation spatio-temporelle du cerveau comme une sĂ©rie d'«états de connectivitĂ© fonctionnelle » transitoires Ă  travers une analyse dynamique des rĂ©seaux. Ce domaine prend de l'ampleur car il permet non seulement d'aborder les processus cognitifs, mais aussi d’apporter des informations importantes sur les altĂ©rations fonctionnelles des principaux motifs de connectivitĂ© dans le cadre des pathologies neurologiques. Dans ce contexte, deux enjeux principaux ont Ă©tĂ© identifiĂ©s : (1) A quel point les techniques de neuroimagerie non-invasives Ă  haute rĂ©solution temporelle, tel que l'Ă©lectro/magnĂ©toencĂ©phalographie (EEG/MEG), peuvent-elles suivre l’évolution temporelle rapide des Ă©tats cĂ©rĂ©braux essentiels durant l'exĂ©cution d’une tĂąche? (2) Comment les maladies neurologiques peuvent-elles affecter, spatialement et temporellement, les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux? Par consĂ©quent, pour tenter de relever ces deux dĂ©fis, les deux objectifs de ma thĂšse sont les suivants : 1. Estimer les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux Ă  l’aide des techniques EEG/MEG. Le premier objectif consiste Ă  explorer la mĂ©thodologie appropriĂ©e qui permet d'extraire des motifs de connectivitĂ© pertinents relatifs Ă  l'activitĂ© neuronale lors de l'exĂ©cution d’une tĂąche. Tout d'abord, trois ensembles indĂ©pendants de donnĂ©es MEG chez des sujets sains ont Ă©tĂ© utilisĂ©s pendant des tĂąches motrice et de mnĂ©sique exĂ©cutĂ©es sur des Ă©chelles de temps variables. Nous avons utilisĂ© la mĂ©thode de « EEG/MEG source connectivity » suivie d'une estimation dynamique des rĂ©seaux fonctionnels afin d’estimer la connectivitĂ© fonctionnelle dynamique au niveau cortical. Ensuite, plusieurs techniques de dĂ©composition basĂ©es sur les donnĂ©es ont Ă©tĂ© appliquĂ©es pour rĂ©duire la dimension des rĂ©seaux dynamiques, et ceci en dĂ©rivant les principaux Ă©tats cĂ©rĂ©braux avec leur activation temporelle. La performance relative de ces techniques a Ă©tĂ© Ă©valuĂ©e et comparĂ©e au niveau du groupe et au niveau individuel. Dans un second temps, une dĂ©marche similaire Ă  la prĂ©cĂ©dente a Ă©tĂ© testĂ©e sur des EEG virtuels produits par un modĂšle computationnel de cerveau humain dans lequel une tĂąche cognitive de dĂ©nomination d’images a Ă©tĂ© simulĂ©e en respectant une Ă©chelle de temps trĂšs rapide, afin d’évaluer quantitativement les mĂ©thodes de dĂ©composition ainsi que certains facteurs clĂ©s utilisĂ©s. Principalement, les rĂ©sultats qualitatifs et quantitatifs montrent les effets prometteurs des mĂ©thodes testĂ©es avec nĂ©anmoins une certaine variabilitĂ© en termes de prĂ©cision spatiale et temporelle, liĂ©e Ă  la complexitĂ© du scĂ©nario et Ă  l'Ă©chelle temporelle. Cette Ă©tude basĂ©e sur une vĂ©ritĂ© terrain indique que le choix des mĂ©thodes peut influencer l'interprĂ©tation des rĂ©sultats. 2. DĂ©tecter les anomalies de connectivitĂ© fonctionnelle au sein des rĂ©seaux cognitifs dans la maladie Parkinson. L'objectif principal de ce travail Ă©tait d'identifier les principales altĂ©rations dans les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux cognitifs chez les patients Parkinsoniens. Pour cette Ă©tude, des donnĂ©es EEG de haute rĂ©solution (HD-EEG, 256 Ă©lĂ©ctrodes) ont Ă©tĂ© enregistrĂ©es Ă  partir de 31 sujets (21 patients, 10 sujets sains) au cours de la tĂąche de conflit cognitif nommĂ©e Simon-Task. Une variante de l'analyse des composantes indĂ©pendantes a Ă©tĂ© utilisĂ©e pour dĂ©river des composantes statistiquement indĂ©pendantes dans les deux groupes. Les rĂ©sultats dĂ©montrent l’existence de diffĂ©rences spatiotemporelles dans les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux entre les sujets sains et les patients.As a complex system, the brain flexibly processes information through dynamic reconfiguration of distributed brain regions at sub-second time scale. A major endeavor in neuroscience is to describe the spatiotemporal organization of the brain as a series of transient “functional connectivity states” using time-resolved analysis. This field is gaining momentum since it not only allows tackling cognitive processes but also holds valuable information about functional alterations of key connectivity patterns in neurological pathologies. In this context, two main challenges have been identified: (1) To what extent can non-invasive neuroimaging techniques with high temporal resolution, namely electro/magnetoencephalography (EEG/MEG), track fast temporally evolving brain states during behavioral tasks? (2) How can neurological diseases affect, spatially and temporally, the identified dynamic brain network states?Therefore, as an attempt to address both challenges, the aim of my thesis is two-folded:1. Track dynamic brain network states using EEG/MEG Here the objective is to explore the appropriate methodology that allows extracting relevant connectivity patterns, underlying neural activity when performing tasks. First, three independent MEG datasets from 95 healthy subjects were used during motor and working memory tasks operating on variable time scales. We used the “EEG/MEG source connectivity” method to estimate dynamic functional connectivity (dFC) matrices at the cortical level. Then, several data-driven decomposition techniques were applied to reduce dFC dimensionality by deriving principal brain patterns with their temporal activation. The performance of these techniques was evaluated and compared at group and subject levels. Second, the previous pipeline was tested using a physiologically based ground truth computational model of a human brain to simulate HD-EEG activity during cognitive task driven at a rapid time scale, as a way to assess a quantitative evaluation of decomposition methods along with multiple key factors used in the pipeline. Primarily, both qualitative and quantitative results show promising outcomes of tested methods with some variability in terms of spatial and temporal accuracy, related to task complexity and time scale. Thus, our findings suggest a careful choice of these methods as they may influence results interpretation.2. Tracking dysfunctional electrophysiological networks in Parkinson’s diseaseThe main purpose of this work was to identify the major alterations evoked in the extracted dynamic network states for PD patients. For this reason, HD-EEG data was recorded from 31 subjects (21 patients, 10 healthy subjects) during a Simon task. A variant of temporal independent component analysis was used to derive statistically independent components for both groups. Results demonstrate a difference in the spatiotemporal behavior of the dynamic network states between healthy subjects and PD patients

    Dynamique des réseaux cérébraux électrophysiologiques (dys)fonctionnels

    No full text
    As a complex system, the brain flexibly processes information through dynamic reconfiguration of distributed brain regions at sub-second time scale. A major endeavor in neuroscience is to describe the spatiotemporal organization of the brain as a series of transient “functional connectivity states” using time-resolved analysis. This field is gaining momentum since it not only allows tackling cognitive processes but also holds valuable information about functional alterations of key connectivity patterns in neurological pathologies. In this context, two main challenges have been identified: (1) To what extent can non-invasive neuroimaging techniques with high temporal resolution, namely electro/magnetoencephalography (EEG/MEG), track fast temporally evolving brain states during behavioral tasks? (2) How can neurological diseases affect, spatially and temporally, the identified dynamic brain network states?Therefore, as an attempt to address both challenges, the aim of my thesis is two-folded:1.Track dynamic brain network states using EEG/MEG Here the objective is to explore the appropriate methodology that allows extracting relevant connectivity patterns, underlying neural activity when performing tasks. First, three independent MEG datasets from 95 healthy subjects were used during motor and working memory tasks operating on variable time scales. We used the “EEG/MEG source connectivity” method to estimate dynamic functional connectivity (dFC) matrices at the cortical level. Then, several data-driven decomposition techniques were applied to reduce dFC dimensionality by deriving principal brain patterns with their temporal activation. The performance of these techniques was evaluated and compared at group and subject levels. Second, the previous pipeline was tested using a physiologically based ground truth computational model of a human brain to simulate HD-EEG activity during cognitive task driven at a rapid time scale, as a way to assess a quantitative evaluation of decomposition methods along with multiple key factors used in the pipeline. Primarily, both qualitative and quantitative results show promising outcomes of tested methods with some variability in terms of spatial and temporal accuracy, related to task complexity and time scale. Thus, our findings suggest a careful choice of these methods as they may influence results interpretation.2.Tracking dysfunctional electrophysiological networks in Parkinson’s diseaseThe main purpose of this work was to identify the major alterations evoked in the extracted dynamic network states for PD patients. For this reason, HD-EEG data was recorded from 31 subjects (21 patients, 10 healthy subjects) during a Simon task. A variant of temporal independent component analysis was used to derive statistically independent components for both groups. Results demonstrate a difference in the spatiotemporal behavior of the dynamic network states between healthy subjects and PD patients.En tant que systĂšme complexe, le cerveau traite de maniĂšre flexible les informations grĂące Ă  une reconfiguration dynamique des rĂ©seaux neuronaux sur une Ă©chelle de temps de l’ordre de la milliseconde. Un objectif majeur en neurosciences est de dĂ©crire l'organisation spatio-temporelle du cerveau comme une sĂ©rie d'«états de connectivitĂ© fonctionnelle » transitoires Ă  travers une analyse dynamique des rĂ©seaux. Ce domaine prend de l'ampleur car il permet non seulement d'aborder les processus cognitifs, mais aussi d’apporter des informations importantes sur les altĂ©rations fonctionnelles des principaux motifs de connectivitĂ© dans le cadre des pathologies neurologiques. Dans ce contexte, deux enjeux principaux ont Ă©tĂ© identifiĂ©s : (1) A quel point les techniques de neuroimagerie non-invasives Ă  haute rĂ©solution temporelle, tel que l'Ă©lectro/magnĂ©toencĂ©phalographie (EEG/MEG), peuvent-elles suivre l’évolution temporelle rapide des Ă©tats cĂ©rĂ©braux essentiels durant l'exĂ©cution d’une tĂąche? (2) Comment les maladies neurologiques peuvent-elles affecter, spatialement et temporellement, les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux? Par consĂ©quent, pour tenter de relever ces deux dĂ©fis, les deux objectifs de ma thĂšse sont les suivants : 1. Estimer les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux Ă  l’aide des techniques EEG/MEG. Le premier objectif consiste Ă  explorer la mĂ©thodologie appropriĂ©e qui permet d'extraire des motifs de connectivitĂ© pertinents relatifs Ă  l'activitĂ© neuronale lors de l'exĂ©cution d’une tĂąche. Tout d'abord, trois ensembles indĂ©pendants de donnĂ©es MEG chez des sujets sains ont Ă©tĂ© utilisĂ©s pendant des tĂąches motrice et de mnĂ©sique exĂ©cutĂ©es sur des Ă©chelles de temps variables. Nous avons utilisĂ© la mĂ©thode de « EEG/MEG source connectivity » suivie d'une estimation dynamique des rĂ©seaux fonctionnels afin d’estimer la connectivitĂ© fonctionnelle dynamique au niveau cortical. Ensuite, plusieurs techniques de dĂ©composition basĂ©es sur les donnĂ©es ont Ă©tĂ© appliquĂ©es pour rĂ©duire la dimension des rĂ©seaux dynamiques, et ceci en dĂ©rivant les principaux Ă©tats cĂ©rĂ©braux avec leur activation temporelle. La performance relative de ces techniques a Ă©tĂ© Ă©valuĂ©e et comparĂ©e au niveau du groupe et au niveau individuel. Dans un second temps, une dĂ©marche similaire Ă  la prĂ©cĂ©dente a Ă©tĂ© testĂ©e sur des EEG virtuels produits par un modĂšle computationnel de cerveau humain dans lequel une tĂąche cognitive de dĂ©nomination d’images a Ă©tĂ© simulĂ©e en respectant une Ă©chelle de temps trĂšs rapide, afin d’évaluer quantitativement les mĂ©thodes de dĂ©composition ainsi que certains facteurs clĂ©s utilisĂ©s. Principalement, les rĂ©sultats qualitatifs et quantitatifs montrent les effets prometteurs des mĂ©thodes testĂ©es avec nĂ©anmoins une certaine variabilitĂ© en termes de prĂ©cision spatiale et temporelle, liĂ©e Ă  la complexitĂ© du scĂ©nario et Ă  l'Ă©chelle temporelle. Cette Ă©tude basĂ©e sur une vĂ©ritĂ© terrain indique que le choix des mĂ©thodes peut influencer l'interprĂ©tation des rĂ©sultats. 2. DĂ©tecter les anomalies de connectivitĂ© fonctionnelle au sein des rĂ©seaux cognitifs dans la maladie Parkinson. L'objectif principal de ce travail Ă©tait d'identifier les principales altĂ©rations dans les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux cognitifs chez les patients Parkinsoniens. Pour cette Ă©tude, des donnĂ©es EEG de haute rĂ©solution (HD-EEG, 256 Ă©lĂ©ctrodes) ont Ă©tĂ© enregistrĂ©es Ă  partir de 31 sujets (21 patients, 10 sujets sains) au cours de la tĂąche de conflit cognitif nommĂ©e Simon-Task. Une variante de l'analyse des composantes indĂ©pendantes a Ă©tĂ© utilisĂ©e pour dĂ©river des composantes statistiquement indĂ©pendantes dans les deux groupes. Les rĂ©sultats dĂ©montrent l’existence de diffĂ©rences spatiotemporelles dans les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux entre les sujets sains et les patients

    Dynamique des réseaux cérébraux électrophysiologiques (dys)fonctionnels

    No full text
    As a complex system, the brain flexibly processes information through dynamic reconfiguration of distributed brain regions at sub-second time scale. A major endeavor in neuroscience is to describe the spatiotemporal organization of the brain as a series of transient “functional connectivity states” using time-resolved analysis. This field is gaining momentum since it not only allows tackling cognitive processes but also holds valuable information about functional alterations of key connectivity patterns in neurological pathologies. In this context, two main challenges have been identified: (1) To what extent can non-invasive neuroimaging techniques with high temporal resolution, namely electro/magnetoencephalography (EEG/MEG), track fast temporally evolving brain states during behavioral tasks? (2) How can neurological diseases affect, spatially and temporally, the identified dynamic brain network states?Therefore, as an attempt to address both challenges, the aim of my thesis is two-folded:1.Track dynamic brain network states using EEG/MEG Here the objective is to explore the appropriate methodology that allows extracting relevant connectivity patterns, underlying neural activity when performing tasks. First, three independent MEG datasets from 95 healthy subjects were used during motor and working memory tasks operating on variable time scales. We used the “EEG/MEG source connectivity” method to estimate dynamic functional connectivity (dFC) matrices at the cortical level. Then, several data-driven decomposition techniques were applied to reduce dFC dimensionality by deriving principal brain patterns with their temporal activation. The performance of these techniques was evaluated and compared at group and subject levels. Second, the previous pipeline was tested using a physiologically based ground truth computational model of a human brain to simulate HD-EEG activity during cognitive task driven at a rapid time scale, as a way to assess a quantitative evaluation of decomposition methods along with multiple key factors used in the pipeline. Primarily, both qualitative and quantitative results show promising outcomes of tested methods with some variability in terms of spatial and temporal accuracy, related to task complexity and time scale. Thus, our findings suggest a careful choice of these methods as they may influence results interpretation.2.Tracking dysfunctional electrophysiological networks in Parkinson’s diseaseThe main purpose of this work was to identify the major alterations evoked in the extracted dynamic network states for PD patients. For this reason, HD-EEG data was recorded from 31 subjects (21 patients, 10 healthy subjects) during a Simon task. A variant of temporal independent component analysis was used to derive statistically independent components for both groups. Results demonstrate a difference in the spatiotemporal behavior of the dynamic network states between healthy subjects and PD patients.En tant que systĂšme complexe, le cerveau traite de maniĂšre flexible les informations grĂące Ă  une reconfiguration dynamique des rĂ©seaux neuronaux sur une Ă©chelle de temps de l’ordre de la milliseconde. Un objectif majeur en neurosciences est de dĂ©crire l'organisation spatio-temporelle du cerveau comme une sĂ©rie d'«états de connectivitĂ© fonctionnelle » transitoires Ă  travers une analyse dynamique des rĂ©seaux. Ce domaine prend de l'ampleur car il permet non seulement d'aborder les processus cognitifs, mais aussi d’apporter des informations importantes sur les altĂ©rations fonctionnelles des principaux motifs de connectivitĂ© dans le cadre des pathologies neurologiques. Dans ce contexte, deux enjeux principaux ont Ă©tĂ© identifiĂ©s : (1) A quel point les techniques de neuroimagerie non-invasives Ă  haute rĂ©solution temporelle, tel que l'Ă©lectro/magnĂ©toencĂ©phalographie (EEG/MEG), peuvent-elles suivre l’évolution temporelle rapide des Ă©tats cĂ©rĂ©braux essentiels durant l'exĂ©cution d’une tĂąche? (2) Comment les maladies neurologiques peuvent-elles affecter, spatialement et temporellement, les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux? Par consĂ©quent, pour tenter de relever ces deux dĂ©fis, les deux objectifs de ma thĂšse sont les suivants : 1. Estimer les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux Ă  l’aide des techniques EEG/MEG. Le premier objectif consiste Ă  explorer la mĂ©thodologie appropriĂ©e qui permet d'extraire des motifs de connectivitĂ© pertinents relatifs Ă  l'activitĂ© neuronale lors de l'exĂ©cution d’une tĂąche. Tout d'abord, trois ensembles indĂ©pendants de donnĂ©es MEG chez des sujets sains ont Ă©tĂ© utilisĂ©s pendant des tĂąches motrice et de mnĂ©sique exĂ©cutĂ©es sur des Ă©chelles de temps variables. Nous avons utilisĂ© la mĂ©thode de « EEG/MEG source connectivity » suivie d'une estimation dynamique des rĂ©seaux fonctionnels afin d’estimer la connectivitĂ© fonctionnelle dynamique au niveau cortical. Ensuite, plusieurs techniques de dĂ©composition basĂ©es sur les donnĂ©es ont Ă©tĂ© appliquĂ©es pour rĂ©duire la dimension des rĂ©seaux dynamiques, et ceci en dĂ©rivant les principaux Ă©tats cĂ©rĂ©braux avec leur activation temporelle. La performance relative de ces techniques a Ă©tĂ© Ă©valuĂ©e et comparĂ©e au niveau du groupe et au niveau individuel. Dans un second temps, une dĂ©marche similaire Ă  la prĂ©cĂ©dente a Ă©tĂ© testĂ©e sur des EEG virtuels produits par un modĂšle computationnel de cerveau humain dans lequel une tĂąche cognitive de dĂ©nomination d’images a Ă©tĂ© simulĂ©e en respectant une Ă©chelle de temps trĂšs rapide, afin d’évaluer quantitativement les mĂ©thodes de dĂ©composition ainsi que certains facteurs clĂ©s utilisĂ©s. Principalement, les rĂ©sultats qualitatifs et quantitatifs montrent les effets prometteurs des mĂ©thodes testĂ©es avec nĂ©anmoins une certaine variabilitĂ© en termes de prĂ©cision spatiale et temporelle, liĂ©e Ă  la complexitĂ© du scĂ©nario et Ă  l'Ă©chelle temporelle. Cette Ă©tude basĂ©e sur une vĂ©ritĂ© terrain indique que le choix des mĂ©thodes peut influencer l'interprĂ©tation des rĂ©sultats. 2. DĂ©tecter les anomalies de connectivitĂ© fonctionnelle au sein des rĂ©seaux cognitifs dans la maladie Parkinson. L'objectif principal de ce travail Ă©tait d'identifier les principales altĂ©rations dans les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux cognitifs chez les patients Parkinsoniens. Pour cette Ă©tude, des donnĂ©es EEG de haute rĂ©solution (HD-EEG, 256 Ă©lĂ©ctrodes) ont Ă©tĂ© enregistrĂ©es Ă  partir de 31 sujets (21 patients, 10 sujets sains) au cours de la tĂąche de conflit cognitif nommĂ©e Simon-Task. Une variante de l'analyse des composantes indĂ©pendantes a Ă©tĂ© utilisĂ©e pour dĂ©river des composantes statistiquement indĂ©pendantes dans les deux groupes. Les rĂ©sultats dĂ©montrent l’existence de diffĂ©rences spatiotemporelles dans les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux entre les sujets sains et les patients

    Dynamique des réseaux cérébraux électrophysiologiques (dys)fonctionnels

    No full text
    As a complex system, the brain flexibly processes information through dynamic reconfiguration of distributed brain regions at sub-second time scale. A major endeavor in neuroscience is to describe the spatiotemporal organization of the brain as a series of transient “functional connectivity states” using time-resolved analysis. This field is gaining momentum since it not only allows tackling cognitive processes but also holds valuable information about functional alterations of key connectivity patterns in neurological pathologies. In this context, two main challenges have been identified: (1) To what extent can non-invasive neuroimaging techniques with high temporal resolution, namely electro/magnetoencephalography (EEG/MEG), track fast temporally evolving brain states during behavioral tasks? (2) How can neurological diseases affect, spatially and temporally, the identified dynamic brain network states?Therefore, as an attempt to address both challenges, the aim of my thesis is two-folded:1.Track dynamic brain network states using EEG/MEG Here the objective is to explore the appropriate methodology that allows extracting relevant connectivity patterns, underlying neural activity when performing tasks. First, three independent MEG datasets from 95 healthy subjects were used during motor and working memory tasks operating on variable time scales. We used the “EEG/MEG source connectivity” method to estimate dynamic functional connectivity (dFC) matrices at the cortical level. Then, several data-driven decomposition techniques were applied to reduce dFC dimensionality by deriving principal brain patterns with their temporal activation. The performance of these techniques was evaluated and compared at group and subject levels. Second, the previous pipeline was tested using a physiologically based ground truth computational model of a human brain to simulate HD-EEG activity during cognitive task driven at a rapid time scale, as a way to assess a quantitative evaluation of decomposition methods along with multiple key factors used in the pipeline. Primarily, both qualitative and quantitative results show promising outcomes of tested methods with some variability in terms of spatial and temporal accuracy, related to task complexity and time scale. Thus, our findings suggest a careful choice of these methods as they may influence results interpretation.2.Tracking dysfunctional electrophysiological networks in Parkinson’s diseaseThe main purpose of this work was to identify the major alterations evoked in the extracted dynamic network states for PD patients. For this reason, HD-EEG data was recorded from 31 subjects (21 patients, 10 healthy subjects) during a Simon task. A variant of temporal independent component analysis was used to derive statistically independent components for both groups. Results demonstrate a difference in the spatiotemporal behavior of the dynamic network states between healthy subjects and PD patients.En tant que systĂšme complexe, le cerveau traite de maniĂšre flexible les informations grĂące Ă  une reconfiguration dynamique des rĂ©seaux neuronaux sur une Ă©chelle de temps de l’ordre de la milliseconde. Un objectif majeur en neurosciences est de dĂ©crire l'organisation spatio-temporelle du cerveau comme une sĂ©rie d'«états de connectivitĂ© fonctionnelle » transitoires Ă  travers une analyse dynamique des rĂ©seaux. Ce domaine prend de l'ampleur car il permet non seulement d'aborder les processus cognitifs, mais aussi d’apporter des informations importantes sur les altĂ©rations fonctionnelles des principaux motifs de connectivitĂ© dans le cadre des pathologies neurologiques. Dans ce contexte, deux enjeux principaux ont Ă©tĂ© identifiĂ©s : (1) A quel point les techniques de neuroimagerie non-invasives Ă  haute rĂ©solution temporelle, tel que l'Ă©lectro/magnĂ©toencĂ©phalographie (EEG/MEG), peuvent-elles suivre l’évolution temporelle rapide des Ă©tats cĂ©rĂ©braux essentiels durant l'exĂ©cution d’une tĂąche? (2) Comment les maladies neurologiques peuvent-elles affecter, spatialement et temporellement, les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux? Par consĂ©quent, pour tenter de relever ces deux dĂ©fis, les deux objectifs de ma thĂšse sont les suivants : 1. Estimer les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux Ă  l’aide des techniques EEG/MEG. Le premier objectif consiste Ă  explorer la mĂ©thodologie appropriĂ©e qui permet d'extraire des motifs de connectivitĂ© pertinents relatifs Ă  l'activitĂ© neuronale lors de l'exĂ©cution d’une tĂąche. Tout d'abord, trois ensembles indĂ©pendants de donnĂ©es MEG chez des sujets sains ont Ă©tĂ© utilisĂ©s pendant des tĂąches motrice et de mnĂ©sique exĂ©cutĂ©es sur des Ă©chelles de temps variables. Nous avons utilisĂ© la mĂ©thode de « EEG/MEG source connectivity » suivie d'une estimation dynamique des rĂ©seaux fonctionnels afin d’estimer la connectivitĂ© fonctionnelle dynamique au niveau cortical. Ensuite, plusieurs techniques de dĂ©composition basĂ©es sur les donnĂ©es ont Ă©tĂ© appliquĂ©es pour rĂ©duire la dimension des rĂ©seaux dynamiques, et ceci en dĂ©rivant les principaux Ă©tats cĂ©rĂ©braux avec leur activation temporelle. La performance relative de ces techniques a Ă©tĂ© Ă©valuĂ©e et comparĂ©e au niveau du groupe et au niveau individuel. Dans un second temps, une dĂ©marche similaire Ă  la prĂ©cĂ©dente a Ă©tĂ© testĂ©e sur des EEG virtuels produits par un modĂšle computationnel de cerveau humain dans lequel une tĂąche cognitive de dĂ©nomination d’images a Ă©tĂ© simulĂ©e en respectant une Ă©chelle de temps trĂšs rapide, afin d’évaluer quantitativement les mĂ©thodes de dĂ©composition ainsi que certains facteurs clĂ©s utilisĂ©s. Principalement, les rĂ©sultats qualitatifs et quantitatifs montrent les effets prometteurs des mĂ©thodes testĂ©es avec nĂ©anmoins une certaine variabilitĂ© en termes de prĂ©cision spatiale et temporelle, liĂ©e Ă  la complexitĂ© du scĂ©nario et Ă  l'Ă©chelle temporelle. Cette Ă©tude basĂ©e sur une vĂ©ritĂ© terrain indique que le choix des mĂ©thodes peut influencer l'interprĂ©tation des rĂ©sultats. 2. DĂ©tecter les anomalies de connectivitĂ© fonctionnelle au sein des rĂ©seaux cognitifs dans la maladie Parkinson. L'objectif principal de ce travail Ă©tait d'identifier les principales altĂ©rations dans les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux cognitifs chez les patients Parkinsoniens. Pour cette Ă©tude, des donnĂ©es EEG de haute rĂ©solution (HD-EEG, 256 Ă©lĂ©ctrodes) ont Ă©tĂ© enregistrĂ©es Ă  partir de 31 sujets (21 patients, 10 sujets sains) au cours de la tĂąche de conflit cognitif nommĂ©e Simon-Task. Une variante de l'analyse des composantes indĂ©pendantes a Ă©tĂ© utilisĂ©e pour dĂ©river des composantes statistiquement indĂ©pendantes dans les deux groupes. Les rĂ©sultats dĂ©montrent l’existence de diffĂ©rences spatiotemporelles dans les Ă©tats dynamiques des rĂ©seaux cĂ©rĂ©braux entre les sujets sains et les patients

    Analysis of task-related MEG functional brain networks using dynamic mode decomposition

    No full text
    International audienceObjective.Functional connectivity networks explain the different brain states during the diverse motor, cognitive, and sensory functions. Extracting connectivity network configurations and their temporal evolution is crucial for understanding brain function during diverse behavioral tasks.Approach.In this study, we introduce the use of dynamic mode decomposition (DMD) to extract the dynamics of brain networks. We compared DMD with principal component analysis (PCA) using real magnetoencephalography data during motor and memory tasks.Main results.The framework generates dominant connectivity brain networks and their time dynamics during simple tasks, such as button press and left-hand movement, as well as more complex tasks, such as picture naming and memory tasks. Our findings show that the proposed methodology with both the PCA-based and DMD-based approaches extracts similar dominant connectivity networks and their corresponding temporal dynamics.Significance.We believe that the proposed methodology with both the PCA and the DMD approaches has a very high potential for deciphering the spatiotemporal dynamics of electrophysiological brain network states during tasks

    Dynamics of task-related electrophysiological networks: a benchmarking study

    No full text
    International audienceMotor, sensory and cognitive functions rely on dynamic reshaping of functional brain networks. Tracking these rapid changes is crucial to understand information processing in the brain, but challenging due to the great variety of dimensionality reduction methods used at the network-level and the limited evaluation studies. Using Magnetoencephalography (MEG) combined with Source Separation (SS) methods, we present an integrated framework to track fast dynamics of electrophysiological brain networks. We evaluate nine SS methods applied to three independent MEG databases (N=95) during motor and memory tasks. We report differences between these methods at the group and subject level. We seek to help researchers in choosing objectively the appropriate SS method when tracking fast reconfiguration of functional brain networks, due to its enormous benefits in cognitive and clinical neuroscience

    The development of an automated machine learning pipeline for the detection of Alzheimer's Disease

    No full text
    International audienceAlthough Alzheimer's disease is the most prevalent form of dementia, there are no treatments capable of slowing disease progression. A lack of reliable disease endpoints and/or biomarkers contributes in part to the absence of effective therapies. Using machine learning to analyze EEG offers a possible solution to overcome many of the limitations of current diagnostic modalities. Here we develop a logistic regression model with an accuracy of 81% that addresses many of the shortcomings of previous works. To our knowledge, no other study has been able to solve the following problems simultaneously: (1) a lack of automation and unbiased removal of artifacts, (2) a dependence on a high level of expertise in data pre-processing and ML for non-automated processes, (3) the need for very large sample sizes and accurate EEG source localization using high density systems, (4) and a reliance on black box ML approaches such as deep neural nets with unexplainable feature selection. This study presents a proof-of-concept for an automated and scalable technology that could potentially be used to diagnose AD in clinical settings as an adjunct to conventional neuropsychological testing, thus enhancing efficiency, reproducibility, and practicality of AD diagnosis

    Assessing HD-EEG functional connectivity states using a human brain computational model

    No full text
    International audienceOBJECTIVE: Electro/Magnetoencephalography (EEG/MEG) source-space network analysis is increasingly recognized as a powerful tool for tracking fast electrophysiological brain dynamics. However, an objective and quantitative evaluation of pipeline steps is challenging due to the lack of realistic ’controlled’ data. Here, our aim is two-folded: 1) provide a quantitative assessment of the advantages and limitations of the analyzed techniques and 2) introduce (and share) a complete framework that can be used to optimize the entire pipeline of EEG/MEG source connectivity. APPROACH: We used a human brain computational model containing both physiologically based cellular GABAergic and Glutamatergic circuits coupled through Diffusion Tensor Imaging, to generate high-density EEG recordings. We designed a scenario of successive gamma-band oscillations in distinct cortical areas to emulate a virtual picture-naming task. We identified fast time-varying network states and quantified the performance of the key steps involved in the pipeline: 1) inverse models to reconstruct cortical-level sources, 2) functional connectivity measures to compute statistical interdependency between regional signals, and 3) dimensionality reduction methods to derive dominant brain network states (BNS). MAIN RESULTS: Using a systematic evaluation of the different decomposition techniques, results show significant variability among tested algorithms in terms of spatial and temporal accuracy. We outlined the spatial precision, the temporal sensitivity, and the global accuracy of the extracted BNS relative to each method. Our findings suggest a good performance of wMNE/PLV combination to elucidate the appropriate functional networks and ICA techniques to derive relevant dynamic brain network states. SIGNIFICANCE: We suggest using such brain models to go further in the evaluation of the different steps and parameters involved in the EEG/MEG source-space network analysis. This can reduce the empirical selection of inverse model, connectivity measure, and dimensionality reduction method as some of the methods can have a considerable impact on the results and interpretation

    Assessing HD-EEG functional connectivity states using a human brain computational model

    No full text
    International audienceOBJECTIVE: Electro/Magnetoencephalography (EEG/MEG) source-space network analysis is increasingly recognized as a powerful tool for tracking fast electrophysiological brain dynamics. However, an objective and quantitative evaluation of pipeline steps is challenging due to the lack of realistic ’controlled’ data. Here, our aim is two-folded: 1) provide a quantitative assessment of the advantages and limitations of the analyzed techniques and 2) introduce (and share) a complete framework that can be used to optimize the entire pipeline of EEG/MEG source connectivity. APPROACH: We used a human brain computational model containing both physiologically based cellular GABAergic and Glutamatergic circuits coupled through Diffusion Tensor Imaging, to generate high-density EEG recordings. We designed a scenario of successive gamma-band oscillations in distinct cortical areas to emulate a virtual picture-naming task. We identified fast time-varying network states and quantified the performance of the key steps involved in the pipeline: 1) inverse models to reconstruct cortical-level sources, 2) functional connectivity measures to compute statistical interdependency between regional signals, and 3) dimensionality reduction methods to derive dominant brain network states (BNS). MAIN RESULTS: Using a systematic evaluation of the different decomposition techniques, results show significant variability among tested algorithms in terms of spatial and temporal accuracy. We outlined the spatial precision, the temporal sensitivity, and the global accuracy of the extracted BNS relative to each method. Our findings suggest a good performance of wMNE/PLV combination to elucidate the appropriate functional networks and ICA techniques to derive relevant dynamic brain network states. SIGNIFICANCE: We suggest using such brain models to go further in the evaluation of the different steps and parameters involved in the EEG/MEG source-space network analysis. This can reduce the empirical selection of inverse model, connectivity measure, and dimensionality reduction method as some of the methods can have a considerable impact on the results and interpretation

    Spatio-temporal dynamics of large-scale electrophysiological networks during cognitive action control in healthy controls and Parkinson’s disease patients

    Get PDF
    International audienceAmong the cognitive symptoms that are associated with Parkinson’s disease (PD), alterations in cognitive action control (CAC) are commonly reported in patients. CAC enables the suppression of an automatic action, in favor of a goal-directed one. The implementation of CAC is time-resolved and arguably associated with dynamic changes in functional brain networks. However, the electrophysiological functional networks involved, their dynamic changes, and how these changes are affected by PD, still remain unknown. In this study, to address this gap of knowledge, 10 PD patients and 10 healthy controls (HC) underwent a Simon task while high-density electroencephalography (HD-EEG) was recorded. Source-level dynamic connectivity matrices were estimated using the phase-locking value in the beta (12-25 Hz) and gamma (30-45 Hz) frequency bands. Temporal independent component analyses were used as a dimension reduction tool to isolate the task-related brain network states. Typical microstate metrics were quantified to investigate the presence of these states at the subject-level. Our results first confirmed that PD patients experienced difficulties in inhibiting automatic responses during the task. At the group-level, we found three functional network states in the beta band that involved fronto-temporal, temporo-cingulate and fronto-frontal connections with typical CAC-related prefrontal and cingulate nodes (e.g., inferior frontal cortex). The presence of these networks did not differ between PD patients and HC when analyzing microstates metrics, and no robust correlations with behavior were found. In the gamma band, five networks were found, including one fronto-temporal network that was identical to the one found in the beta band. These networks also included CAC-related nodes previously identified in different neuroimaging modalities. Similarly to the beta networks, no subject-level differences were found between PD patients and HC. Interestingly, in both frequency bands, the dominant network at the subject-level was never the one that was the most durably modulated by the task. Altogether, this study identified the dynamic functional brain networks observed during CAC, but did not highlight PD-related changes in these networks that might explain behavioral changes. Although other new methods might be needed to investigate the presence of task-related networks at the subject-level, this study still highlights that task-based dynamic functional connectivity is a promising approach in understanding the cognitive dysfunctions observed in PD and beyond
    corecore