5 research outputs found

    The Effect of Low-Level Laser therapy and Curcumin on the Expression of LC3, ATG10 and BAX/BCL2 Ratio in PC12 Cells Induced by 6-Hydroxide Dopamine

    Get PDF
    Introduction: Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. The neuroinflammation in the brain of PD patients is one of the critical processes in the immune pathogenesis of PD leading to the neural loss in the substantia nigra. Due to the anti-inflammatory effects of curcumin (CU) and low-level laser therapy (LLLT), we examined the protective effect of CU and LLLT on PC12 cells treated with 6-hydroxydopamine (6-OHDA) as a Parkinson model.Methods: PC12 cells were pretreated using various concentrations of 6-OHDA for 24 hours to induce oxidative and cellular damages. PC12-6-OHDA cells were co-treated with CU and LLLT. The effects of CU and LLLT on Bax/Bcl2 and LC3/ATG10 expression were analyzed by real-time PCR and cell viability was assessed by MTT assay. Cell A Software was used to calculate the length of the Neurite and cell body areas.Results: The results of this study show that the combination of CU dose-dependently and LLLT has a significant neuroprotective effect on cells and cellular death significantly decreases by increasing CU concentration. CU+LLLT decreases Bax/Bcl2 ratio which is an indicator of apoptosis and it also rescued a decrease in LC3 and ATG10 expression in comparison with 6-OHDA group.Conclusion: This study shows that the combination of 5 μM CU and LLLT has the best neuroprotective effect on PC12 cells against 6-OHDA by decreasing the BAX/BCL2 ratio

    The Effect of Low-Power Laser Therapy on the TGF/β Signaling Pathway in Chronic Kidney Disease: A Review

    Get PDF
    Objective: The purpose of this study is to investigate the effects of low-power lasers on kidney disease by investigating several studies.Methods: A number of articles from 1998 to 2019 were chosen from the sources of PubMed, Scopus, and only the articles studying the effect of low-power lasers on kidney disease were investigated.Results: After reviewing the literature, 21 articles examining only the effects of low-power lasers on kidney disease were found. The results of these studies showed that the parameter of the low-power laser would result in different outcomes. So, a low-power laser with various parameters can be effective in the treatment of kidney diseases such as acute kidney disease, diabetes, glomerulonephritis, nephrectomy, metabolic syndrome, and kidney fibrosis. Most studies have shown that low-power lasers can affect TGFβ1 signaling which is the most important signaling in the treatment of renal fibrosis.Conclusion: Lasers can be effective in reducing or enhancing inflammatory responses, reducing fibrosis factors, and decreasing reactive oxygen species (ROS) levels in kidney disease and glomerular cell proliferation

    Freeze-dried multiscale porous nanofibrous three dimensional scaffolds for bone regenerations

    Get PDF
    Introduction: Simulating hydrophobic-hydrophilic composite face with hierarchical porous and fibrous architectures of bone extracellular matrix (ECM) is a key aspect in bone tissue engineering. This study focused on the fabrication of new three-dimensional (3D) scaffolds containing polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA), with and without graphene oxide (GO) nanoparticles using the chemical cross-linking and freeze-drying methods for bone tissue application. The effects of GO on physicochemical features and osteoinduction properties of the scaffolds were evaluated through an in vitro study. Methods: After synthesizing the GO nanoparticles, two types of 3D scaffolds, PTFE/PVA (PP) and PTFE/PVA/GO (PPG), were developed by cross-linking and freeze-drying methods. The physicochemical features of scaffolds were assessed and the interaction of the 3D scaffold types with human adipose mesenchymal stem cells (hADSCs) including attachment, proliferation, and differentiation to osteogenic like cells were investigated. Results: GO nanoparticles were successfully synthesized with no agglomeration. The blending of PTFE as a hydrophobic polymer with PVA polymer and GO nanoparticles (hydrophilic compartments) were successful. Two types of 3D scaffolds had nano topographical structures, good porosities, hydrophilic surfaces, thermal stabilities, good stiffness, as well as supporting the cell attachments, proliferation, and osteogenic differentiation. Notably, GO incorporating scaffolds provided a better milieu for cell behaviors. Conclusion: Novel multiscale porous nanofibrous 3D scaffolds made from PTFE/ PVA polymers with and without GO nanoparticles could be an ideal candidate for bone tissue engineering as a 3D template

    The Comparison between the Osteogenic Differentiation Potential of Clay-Polyacrylonitrile Nanocomposite Scaffold and Graphene-Polyacrylonitrile Scaffold in Human Mesenchymal Stem Cells

    No full text
    Nowadays, bone repair by means of stem cells potential is considered as a new approach in regenerative medicine. Adipose-derived mesenchymal stem cells (AD-MSCs) have been investigated as a plentiful cell source with the ability of osteogenic differentiation which can play an important role in bone tissue engineering applications. Discovering proper elements in combination of scaffolds structure to stimulate osteogenesis in adipose-derived stem cells is one of the major concerns in this issue. Porous polymeric scaffolds such as polyacrylonitrile (PAN) and susceptible nanoparticles have attracted a lot of attention recently due to biodegradability and differentiation potential respectively. In the present study, clay-PAN nanocomposite (CPN) and graphene-PAN scaffold have been electrospuned separately and evaluated from the point of the osteogenic potential in AD-MSCs. The objective of this study was to determine the effect of clay and graphene nanoparticles with PAN nanofibers on the fate of viability and osteogenesis of AD-MSCs. First, isolated mesenchymal cells were characterized by flow cytometry. After cell culture on the surface of scaffolds MTT assay, scanning electron microscope (SEM) and DAPI staining were done. The scaffolds were characterized and osteogenic differentiation potential of AD-MSCs has been investigated. The results have indicated that alkaline phosphatase (ALP) activity, calcium content and collagen expression of cells which cultured on clay-PAN nanofibers were higher than cells which cultured on graphene-PAN scaffold. Taken together, these results suggest that porous nanofiber clay-PAN scaffold can enhance the osteogenic differentiation of AD-MSCs, and can be used as a new biodegradable scaffold for bone tissue engineering applications
    corecore