1,767 research outputs found

    Merged Search Algorithms for Radio Frequency Identification Anticollision

    Get PDF
    Nowadays, the Radio Frequency Identification (RFID) system enables the control of many devices over an open communication infrastructure ranging from a small home area network to the global Internet. Moreover, a variety of consumer products are tagged with remotely low-cost readable identification electromagnetic tags to replace Bar Codes. Applications such as automatic object tracking, inventory and supply chain management, and Web appliances were adopted for years in many companies. The arbitration algorithm for RFID system is used to arbitrate all the tags to avoid the collision problem with the existence of multiple tags in the interrogation field of a transponder. A splitting algorithm which is called Binary Search Tree (BST) is well known for multitags arbitration. In the current study, a splitting-based schema called Merged Search Tree is proposed to capture identification codes correctly for anticollision. Performance of the proposed algorithm is compared with the original BST according to time and power consumed during the arbitration process. The results show that the proposed model can reduce searching time and power consumed to achieve a better performance arbitration

    Assessing the Effectiveness of Environmental Training for Diving Tourists Using the DEA Model

    Get PDF
    This study proposes an approach based on data envelopment analysis to assess the effectiveness of environmental training for tourists. Most studies have considered only outcomes (i.e., the continuance or halting of improper behavior towards the environment) to represent the effectiveness of environmental training but this approach does not consider the amount of resources that have been applied in the process. The model utilizes input and output factors to estimate the index of effectiveness. We used a survey of underwater tourist activity to test the proposed model in the empirical evaluation and explored both the internal and external influences on the effectiveness

    Using the Norm Activation Model to Predict the Pro-Environmental Behaviors of Public Servants at the Central and Local Governments in Taiwan

    Get PDF
    An understanding of the environmental value-action gap between public servants at the central and local governments is essential for the effective implementation of environmental policies, which is limited in the extant literature. This study has adopted the norm activation model to explore the pro-environmental behaviors of public servants at the central and local governments in Taiwan. A total of 7567 valid questionnaires were collected, and significant differences were evident between public servants at the central (n = 3400) and local (n = 4167) governments in personal norms, awareness of consequences, ascription of responsibility, and pro-environmental behaviors. Findings revealed that personal norms were the key factors predicting pro-environmental behaviors of public servants at both the central and local governments. Results also indicated that the awareness of consequences by public servants at the central government had a direct effect on their pro-environmental behaviors, which in turn had a significant effect on their ascription of responsibility. In contrast, awareness of consequences by public servants at the local government had no significant direct effect on their pro-environmental behaviors and had only a weak positive effect on their ascription of responsibility

    SmartFuzz: An automated smart fuzzing approach for testing SmartThings apps

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Ventricular divergence correlates with epicardial wavebreaks and predicts ventricular arrhythmia in isolated rabbit hearts during therapeutic hypothermia

    Get PDF
    INTRODUCTION: High beat-to-beat morphological variation (divergence) on the ventricular electrogram during programmed ventricular stimulation (PVS) is associated with increased risk of ventricular fibrillation (VF), with unclear mechanisms. We hypothesized that ventricular divergence is associated with epicardial wavebreaks during PVS, and that it predicts VF occurrence. METHOD AND RESULTS: Langendorff-perfused rabbit hearts (n = 10) underwent 30-min therapeutic hypothermia (TH, 30°C), followed by a 20-min treatment with rotigaptide (300 nM), a gap junction modifier. VF inducibility was tested using burst ventricular pacing at the shortest pacing cycle length achieving 1:1 ventricular capture. Pseudo-ECG (p-ECG) and epicardial activation maps were simultaneously recorded for divergence and wavebreaks analysis, respectively. A total of 112 optical and p-ECG recordings (62 at TH, 50 at TH treated with rotigaptide) were analyzed. Adding rotigaptide reduced ventricular divergence, from 0.13±0.10 at TH to 0.09±0.07 (p = 0.018). Similarly, rotigaptide reduced the number of epicardial wavebreaks, from 0.59±0.73 at TH to 0.30±0.49 (p = 0.036). VF inducibility decreased, from 48±31% at TH to 22±32% after rotigaptide infusion (p = 0.032). Linear regression models showed that ventricular divergence correlated with epicardial wavebreaks during TH (p<0.001). CONCLUSION: Ventricular divergence correlated with, and might be predictive of epicardial wavebreaks during PVS at TH. Rotigaptide decreased both the ventricular divergence and epicardial wavebreaks, and reduced the probability of pacing-induced VF during TH

    Current and state of the art on the electrophysiologic characteristics and catheter ablation of arrhythmogenic right ventricular dysplasia/cardiomyopathy

    Get PDF
    AbstractArrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited genetic disease caused by defective desmosomal proteins, and it has typical histopathological features characterized by predominantly progressive fibro-fatty infiltration of the right ventricle. Clinical presentations of ARVD/C vary from syncope, progressive heart failure (HF), ventricular tachyarrhythmias, and sudden cardiac death (SCD). The 2010 modified Task Force criteria were established to facilitate the recognition and diagnosis of ARVD/C. An implantable cardiac defibrillator (ICD) remains to be the cornerstone in prevention of SCD in patients fulfilling the diagnosis of definite ARVD/C, especially among ARVD/C patients with syncope, hemodynamically unstable ventricular tachycardia (VT), ventricular fibrillation, and aborted SCD. Further risk stratification is clinically valuable in the management of patients with borderline or possible ARVD/C and mutation carriers of family members. However, given the entity of heterogeneous penetrance and non-uniform phenotypes, the standardization of clinical practice guidelines for at-risk individuals will be the next frontier to breakthrough.Antiarrhythmic drugs are prescribed frequently to patients experiencing frequent ventricular tachyarrhythmias and/or appropriate ICD shocks. Amiodarone is the recommended drug of choice. Radiofrequency catheter ablation (RFCA) has been demonstrated to effectively eliminate the drug-refractory VT in patients with ARVD/C. However, the efficacy and clinical prognosis of RFCA via endocardial approach alone was disappointing prior to the era of epicardial approach. In recent years, it has been proven that the integration of endocardial and epicardial ablation by targeting the critical isthmus or eliminating abnormal electrograms within the diseased substrates could yield higher acute success and lower recurrence of ventricular tachyarrhythmias during long-term follow-up. Heart transplantation is the final option for patients with extensive disease, biventricular HF with uncontrollable hemodynamic compromise, and refractory ventricular tachyarrhythmias despite aggressive medical and ablation therapies

    TNF-α Mediates Eosinophil Cationic Protein-induced Apoptosis in BEAS-2B Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eosinophilic granulocytes are important for the human immune system. Many cationic proteins with cytotoxic activities, such as eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN), are released from activated eosinophils. ECP, with low RNase activity, is widely used as a biomarker for asthma. ECP inhibits cell viability and induces apoptosis to cells. However, the specific pathway underlying the mechanisms of ECP-induced cytotoxicity remains unclear. This study investigated ECP-induced apoptosis in bronchial epithelial BEAS-2B cells and elucidated the specific pathway during apoptosis.</p> <p>Results</p> <p>To address the mechanisms involved in ECP-induced apoptosis in human BEAS-2B cells, investigation was carried out using chromatin condensation, cleavage of poly (ADP-ribose) polymerase (PARP), sub-G1 distribution in cell cycle, annexin V labeling, and general or specific caspase inhibitors. Caspase-8-dependent apoptosis was demonstrated by cleavage of caspase-8 after recombinant ECP treatment, accompanied with elevated level of tumor necrosis factor alpha (TNF-α). Moreover, ECP-induced apoptosis was effectively inhibited in the presence of neutralizing anti-TNF-α antibody.</p> <p>Conclusion</p> <p>In conclusion, our results have demonstrated that ECP increased TNF-α production in BEAS-2B cells and triggered apoptosis by caspase-8 activation through mitochondria-independent pathway.</p

    Th2 cytokine bias induced by silver nanoparticles in peripheral blood mononuclear cells of common bottlenose dolphins (Tursiops truncatus)

    No full text
    Background Silver nanoparticles (AgNPs) have been widely used in many commercial products due to their excellent antibacterial ability. The AgNPs are released into the environment, gradually accumulate in the ocean, and may affect animals at high trophic levels, such as cetaceans and humans, via the food chain. Hence, the negative health impacts caused by AgNPs in cetaceans are of concern. Cytokines play a major role in the modulation of immune system and can be classified into two types: Th1 and Th2. Th1/Th2 balance can be evaluated by the ratios of their polarizing cytokines (i.e., interferon [IFN]-γ/Interleukin [IL]-4), and animals with imbalanced Th1/Th2 response may become more susceptible to certain kinds of infection. Therefore, the present study evaluated the in vitro cytokine responses of cetacean peripheral blood mononuclear cells (cPBMCs) to 20 nm citrate-AgNPs (C-AgNP20) by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Methods Blood samples were collected from six captive common bottlenose dolphins (Tursiops truncatus). The cPBMCs were isolated and utilized for evaluating the in vitro cytokine responses. The cytokines evaluated included IL-2, IL-4, IL-10, IL-12, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α. The geometric means of two housekeeping genes (HKGs), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β2-microglobulin (B2M), of each sample were determined and used to normalize the mRNA expression levels of target genes. Results The ratio of late apoptotic/necrotic cells of cPBMCs significantly increased with or without concanavalin A (ConA) stimulation after 24 h of 10 µg/ml C-AgNP20 treatment. At 4 h of culture, the mRNA expression level of IL-10 was significantly decreased with 1 µg/ml C-AgNP20 treatment. At 24 h of culture with 1 µg/ml C-AgNP20, the mRNA expression levels of all cytokines were significantly decreased, with the exceptions of IL-4 and IL-10. The IFN-γ/IL-4 ratio was significantly decreased at 24 h of culture with 1 µg/ml C-AgNP20 treatment, and the IL-12/IL-4 ratio was significantly decreased at 4 or 24 h of culture with 0.1 or 1 µg/ml C-AgNP20 treatment, respectively. Furthermore, the mRNA expression level of TNF-α was significantly decreased by 1 µg/ml C-AgNP20 after 24 h of culture. Discussion The present study demonstrated that the sublethal dose of C-AgNP20 (≤1 µg/ml) had an inhibitory effect on the cytokine mRNA expression levels of cPBMCs with the evidence of Th2 cytokine bias and significantly decreased the mRNA expression level of TNF-α. Th2 cytokine bias is associated with enhanced immunity against parasites but decreased immunity to intracellular microorganisms. TNF-α is a contributing factor for the inflammatory response against the infection of intracellular pathogens. In summary, our data indicate that C-AgNP20 suppresses the cellular immune response and thereby increases the susceptibility of cetaceans to infection by intracellular microorganisms

    A Single-Cell Level and Connectome-Derived Computational Model of the Drosophila Brain

    Get PDF
    Computer simulations play an important role in testing hypotheses, integrating knowledge, and providing predictions of neural circuit functions. While considerable effort has been dedicated into simulating primate or rodent brains, the fruit fly (Drosophila melanogaster) is becoming a promising model animal in computational neuroscience for its small brain size, complex cognitive behavior, and abundancy of data available from genes to circuits. Moreover, several Drosophila connectome projects have generated a large number of neuronal images that account for a significant portion of the brain, making a systematic investigation of the whole brain circuit possible. Supported by FlyCircuit (http://www.flycircuit.tw), one of the largest Drosophila neuron image databases, we began a long-term project with the goal to construct a whole-brain spiking network model of the Drosophila brain. In this paper, we report the outcome of the first phase of the project. We developed the Flysim platform, which (1) identifies the polarity of each neuron arbor, (2) predicts connections between neurons, (3) translates morphology data from the database into physiology parameters for computational modeling, (4) reconstructs a brain-wide network model, which consists of 20,089 neurons and 1,044,020 synapses, and (5) performs computer simulations of the resting state. We compared the reconstructed brain network with a randomized brain network by shuffling the connections of each neuron. We found that the reconstructed brain can be easily stabilized by implementing synaptic short-term depression, while the randomized one exhibited seizure-like firing activity under the same treatment. Furthermore, the reconstructed Drosophila brain was structurally and dynamically more diverse than the randomized one and exhibited both Poisson-like and patterned firing activities. Despite being at its early stage of development, this single-cell level brain model allows us to study some of the fundamental properties of neural networks including network balance, critical behavior, long-term stability, and plasticity

    The AMiBA Hexapod Telescope Mount

    Full text link
    AMiBA is the largest hexapod astronomical telescope in current operation. We present a description of this novel hexapod mount with its main mechanical components -- the support cone, universal joints, jack screws, and platform -- and outline the control system with the pointing model and the operating modes that are supported. The AMiBA hexapod mount performance is verified based on optical pointing tests and platform photogrammetry measurements. The photogrammetry results show that the deformations in the inner part of the platform are less than 120 micron rms. This is negligible for optical pointing corrections, radio alignment and radio phase errors for the currently operational 7-element compact configuration. The optical pointing error in azimuth and elevation is successively reduced by a series of corrections to about 0.4 arcmin rms which meets our goal for the 7-element target specifications.Comment: Accepted for ApJ, 33 pages, 15 figure
    • …
    corecore