53 research outputs found

    Laying the foundations for a bio-economy

    Get PDF
    Biological technologies are becoming an important part of the economy. Biotechnology already contributes at least 1% of US GDP, with revenues growing as much as 20% annually. The introduction of composable biological parts will enable an engineering discipline similar to the ones that resulted in modern aviation and information technology. As the sophistication of biological engineering increases, it will provide new goods and services at lower costs and higher efficiencies. Broad access to foundational engineering technologies is seen by some as a threat to physical and economic security. However, regulation of access will serve to suppress the innovation required to produce new vaccines and other countermeasures as well as limiting general economic growth

    Quantile-Specific Penetrance of Genes Affecting Lipoproteins, Adiposity and Height

    Get PDF
    Quantile-dependent penetrance is proposed to occur when the phenotypic expression of a SNP depends upon the population percentile of the phenotype. To illustrate the phenomenon, quantiles of height, body mass index (BMI), and plasma lipids and lipoproteins were compared to genetic risk scores (GRS) derived from single nucleotide polymorphisms (SNP)s having established genome-wide significance: 180 SNPs for height, 32 for BMI, 37 for low-density lipoprotein (LDL)-cholesterol, 47 for high-density lipoprotein (HDL)-cholesterol, 52 for total cholesterol, and 31 for triglycerides in 1930 subjects. Both phenotypes and GRSs were adjusted for sex, age, study, and smoking status. Quantile regression showed that the slope of the genotype-phenotype relationships increased with the percentile of BMI (P = 0.002), LDL-cholesterol (P = 3×10−8), HDL-cholesterol (P = 5×10−6), total cholesterol (P = 2.5×10−6), and triglyceride distribution (P = 7.5×10−6), but not height (P = 0.09). Compared to a GRS's phenotypic effect at the 10th population percentile, its effect at the 90th percentile was 4.2-fold greater for BMI, 4.9-fold greater for LDL-cholesterol, 1.9-fold greater for HDL-cholesterol, 3.1-fold greater for total cholesterol, and 3.3-fold greater for triglycerides. Moreover, the effect of the rs1558902 (FTO) risk allele was 6.7-fold greater at the 90th than the 10th percentile of the BMI distribution, and that of the rs3764261 (CETP) risk allele was 2.4-fold greater at the 90th than the 10th percentile of the HDL-cholesterol distribution. Conceptually, it maybe useful to distinguish environmental effects on the phenotype that in turn alters a gene's phenotypic expression (quantile-dependent penetrance) from environmental effects affecting the gene's phenotypic expression directly (gene-environment interaction)

    Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial taxonomy and phylogeny based on <it>rrs </it>(16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of <it>rrs </it>sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their <it>rrs </it>phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, <it>Clostridium </it>represents a large genus of around 110 species of significant biotechnological and medical importance. Certain <it>Clostridium </it>strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods.</p> <p>Results</p> <p>Seven hundred sixty five <it>rrs </it>sequences (> 1200 nucleotides, nts) belonging to 110 <it>Clostridium </it>species were analyzed. On the basis of 404 <it>rrs </it>sequences belonging to 15 <it>Clostridium </it>species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) <it>in silico </it>restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 <it>Clostridium </it>sp. which are presently classified up to genus level, (ii) identification of 84 novel <it>Clostridium </it>spp. and (iii) potential reduction in the number of <it>Clostridium </it>species represented by small populations.</p> <p>Conclusions</p> <p>This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality rates.</p

    Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    Get PDF
    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era
    corecore