26 research outputs found

    A Deleterious Mutation in DNAJC6 Encoding the Neuronal-Specific Clathrin-Uncoating Co-Chaperone Auxilin, Is Associated with Juvenile Parkinsonism

    Get PDF
    Parkinson disease is caused by neuronal loss in the substantia nigra which manifests by abnormality of movement, muscle tone, and postural stability. Several genes have been implicated in the pathogenesis of Parkinson disease, but the underlying molecular basis is still unknown for ∼70% of the patients. Using homozygosity mapping and whole exome sequencing we identified a deleterious mutation in DNAJC6 in two patients with juvenile Parkinsonism. The mutation was associated with abnormal transcripts and marked reduced DNAJC6 mRNA level. DNAJC6 encodes the HSP40 Auxilin, a protein which is selectively expressed in neurons and confers specificity to the ATPase activity of its partner Hcs70 in clathrin uncoating. In Auxilin null mice it was previously shown that the abnormally increased retention of assembled clathrin on vesicles and in empty cages leads to impaired synaptic vesicle recycling and perturbed clathrin mediated endocytosis. Endocytosis function, studied by transferring uptake, was normal in fibroblasts from our patients, likely because of the presence of another J-domain containing partner which co-chaperones Hsc70-mediated uncoating activity in non-neuronal cells. The present report underscores the importance of the endocytic/lysosomal pathway in the pathogenesis of Parkinson disease and other forms of Parkinsonism

    Biallelic TMEM260 variants cause truncus arteriosus, with or without renal defects

    Get PDF
    Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi-exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse-shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007–0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype

    Biallelic TMEM260 variants cause truncus arteriosus, with or without renal defects

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-08-18, rev-recd 2021-09-22, accepted 2021-10-02, pub-electronic 2021-10-11Article version: VoRPublication status: PublishedFunder: Cancer Research UK; Id: http://dx.doi.org/10.13039/501100000289Funder: European Union's Horizon 2020; Grant(s): 779257Funder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100007155Funder: NHS EnglandFunder: NIHR Oxford Biomedical Research Centre ProgrammeFunder: Society for the Relief of Disabled Children, Hong KongFunder: Wellcome Trust; Id: http://dx.doi.org/10.13039/100010269; Grant(s): 203141/Z/16/ZAbstract: Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi‐exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse‐shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007–0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype

    Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy

    Get PDF
    Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function

    Isolated truncus arteriosus associated with a mutation in the plexin-D1 gene

    No full text
    Truncus arteriosus accounts for approximately 1% of congenital heart defects and the cause of isolated non-syndromic truncus arteriosus is largely unknown. In order to identify the underlying molecular defect in a consanguineous family with recurrent tuncus arteriosus, homozygosity mapping followed by whole exome sequencing was performed. This resulted in the identification of a homozygous mutation, Arg1299Cys, in the PLXND1 gene. The mutation affected a highly conserved residue, segregated with the disease in the family and was absent from available SNP databases and ethnic matched controls. in silico comparative modeling revealed that the mutation resides in the N-terminal segment of the human plexin-D1 intracellular region which interacts with the catalytic GTPase-activating protein homology region. The mutation likely destabilizes the intracellular region, perturbing its anchoring and catalytic activity. The phenotype in human PLXND1 mutation is closely related to that of knockout mice for PLXND1, its co-receptor neuropilin-1 or its ligand SEMA3C. It is therefore suggested that SEMA3C signaling, propagated through the heterodimer receptor plexin-D1/neuropilin, is important for truncus arteriosus septation. Confirmation of this observation will require the identification of PLXND1 mutations in additional patients. Exome analysis is valuable for molecular investigation of single patients with congenital heart defects in whom chromosomal copy number variants have been excluded

    Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility

    Get PDF
    Contains fulltext : 196394.pdf (publisher's version ) (Open Access

    CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia.

    Get PDF
    BACKGROUND: Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by impaired ciliary function, leading to chronic sinopulmonary disease. The genetic causes of PCD are still evolving, while the diagnosis is often dependent on finding a ciliary ultrastructural abnormality and immotile cilia. Here we report a novel gene associated with PCD but without ciliary ultrastructural abnormalities evident by transmission electron microscopy, but with dyskinetic cilia beating. METHODS: Genetic linkage analysis was performed in a family with a PCD subject. Gene expression was studied in Chlamydomonas reinhardtii and human airway epithelial cells, using RNA assays and immunostaining. The phenotypic effects of candidate gene mutations were determined in primary culture human tracheobronchial epithelial cells transduced with gene targeted shRNA sequences. Video-microscopy was used to evaluate cilia motion. RESULTS: A single novel mutation in CCDC65, which created a termination codon at position 293, was identified in a subject with typical clinical features of PCD. CCDC65, an orthologue of the Chlamydomonas nexin-dynein regulatory complex protein DRC2, was localized to the cilia of normal nasal epithelial cells but was absent in those from the proband. CCDC65 expression was up-regulated during ciliogenesis in cultured airway epithelial cells, as was DRC2 in C. reinhardtii following deflagellation. Nasal epithelial cells from the affected individual and CCDC65-specific shRNA transduced normal airway epithelial cells had stiff and dyskinetic cilia beating patterns compared to control cells. Moreover, Gas8, a nexin-dynein regulatory complex component previously identified to associate with CCDC65, was absent in airway cells from the PCD subject and CCDC65-silenced cells. CONCLUSION: Mutation in CCDC65, a nexin-dynein regulatory complex member, resulted in a frameshift mutation and PCD. The affected individual had altered cilia beating patterns, and no detectable ultrastructural defects of the ciliary axoneme, emphasizing the role of the nexin-dynein regulatory complex and the limitations of certain methods for PCD diagnosis
    corecore