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Abstract

Only two families have been reported with biallelic TMEM260 variants segregating

with structural heart defects and renal anomalies syndrome (SHDRA). With a combi-

nation of genome, exome sequencing and RNA studies, we identified eight individuals

from five families with biallelic TMEM260 variants. Variants included one multi-exon

deletion, four nonsense/frameshifts, two splicing changes and one missense change.

Together with the published cases, analysis of clinical data revealed ventricular septal

defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine

levels (6/12), horse-shoe kidneys (1/12) and renal cysts (1/12) in patients. Three

pregnancies were terminated on detection of severe congenital anomalies. Six

patients died between the ages of 6 weeks and 5 years. Using a range of stringencies,

carrier frequency for SHDRA was estimated at 0.0007–0.007 across ancestries. In

conclusion, this study confirms the genetic basis of SHDRA, expands its known muta-

tional spectrum and clarifies its clinical features. We demonstrate that SHDRA is a
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severe condition associated with substantial mortality in early childhood and

characterised by congenital cardiac malformations with a variable renal phenotype.

K E YWORD S

exome sequencing, genome sequencing, kidney, phenotypic variability, renal failure, SHDRA,
structural heart defects and renal anomalies syndrome, TMEM260, truncus arteriosus

1 | INTRODUCTION

TMEM260 is a 79.5 kDa protein with eight transmembrane spans

(www.uniprot.org/uniprot/Q9NX78) located mainly in the nucleo-

plasm and within focal adhesion sites (www.proteinatlas.org).1

TMEM260 encodes at least four protein-coding transcripts. Of these,

two (ENST00000261556.11 and ENST00000538838.5) are consid-

ered to be the main transcripts. They differ in the utilisation of an

internal exon as well as the final three exons, which in the short iso-

form are non-coding.

Five individuals from two families with biallelic truncating TMEM260

variants and brain, cardiac, renal, and digit abnormalities were reported in

2017.2 The condition is now listed on OMIM as “structural heart defects
and renal anomalies syndrome” (SHDRA; MIM #617478). Notably, the

variants in both families mapped to the long isoform, raising the possibil-

ity of SHDRA being an isoform-specific disorder. Since the original

publication, there have been no further reports in the literature. Knowl-

edge about the variant and the clinical spectrum of this condition is

therefore limited (Supplementary background). In this study, we describe

eight affected individuals from five families, confirming that biallelic

TMEM260 loss of function variants cause SHDRA and helping to define

its clinical spectrum.

2 | MATERIALS AND METHODS

Whole genome sequencing in Families 1 and 2 was performed as part

of the 100 000 genomes project (100KGP; https://doi.org/10.6084/

m9.figshare.4530893.v6, Cambridge South REC: 14/EE/1112). Fami-

lies 3–5 were identified via whole exome sequencing (WES) pipelines

and international collaboration. RNA analysis was performed for Fam-

ily 1 using PaxGene blood samples. Carrier frequency for SHDRA was

calculated as described previously.3 More details are in Supplemental

methods and Tables S1-S2.

3 | RESULTS

3.1 | Compound-heterozygous TMEM260 variants
in foetuses with congenital heart anomalies

In F1-II-3 (Figure 1A), type I truncus arteriosus (TA) with pulmonary

stenosis and ventricular septal defect (VSD) were detected on antena-

tal anomaly scan at 20 weeks gestation (Table 1). The pregnancy was

terminated at 21 weeks. Post-mortem examination confirmed the car-

diac anomalies (Figure S1) and did not reveal any other abnormalities.

In F1-II-4 a large peri-membranous outlet VSD, type I TA with small

pulmonary trunk and small pulmonary artery branches were detected

antenatally and the pregnancy was terminated at 24 weeks gestation.

Post-mortem examination confirmed the cardiac anomalies and rev-

ealed a horseshoe kidney. The placenta was also abnormal with a

two-vessel cord and omphalomesenteric duct remnant.

Trio WGS was performed as part of the 100KGP on F1-II-4 and

both parents. Although the initial analysis focussing on several panels

from PanelApp was negative, a scan for Mendelian inconsistencies

highlighted an apparently homozygous NM_017799.4:c.344G > A:p.

(Arg115Lys) TMEM260 variant in F1-II-4 (Figure 1B). As expected, the

father (F1-I-1) was heterozygous for the c.344G > A TMEM260 vari-

ant, but the mother (F1-I-2) was apparently homozygous for the wild-

type allele. Review of read alignments revealed a maternally inherited

4891 bp deletion (Figure 1B) encompassing exons 2–3. Sanger

sequencing and digital droplet PCR confirmed that F1-II-3 was also

hemizygous for c.344G > A. Neither of the unaffected brothers

(F1-II-1 and F1-II-2) had inherited both TMEM260 variants.

Although the c.344G > A variant was initially annotated as p.

Arg115Lys, it involves the last base of exon 3 and results in a drop in

the predicted splicing efficiency (MaxEntScan: 9.65 ! 2.69). We,

therefore, performed RT-PCR on peripheral blood sample from F1-I-1,

which showed the presence of two bands, with only the larger band

seen in controls (Figure 1C). Sanger sequencing confirmed exon 3 skip-

ping (Figure 1D, Figure S2), resulting in a frameshift of exon 4 (p.

Val65AlafsTer32). Similarly, the expected exon 1–4 junction was

detected by RT-PCR in the maternal sample (Figure S3), resulting in p.

(Glu55PhefsTer20). Collectively, the genetic studies, RNA analysis and

similarity of the foetuses' phenotypes with features reported

previously,2 strongly suggest these TMEM260 variants are disease-

causing.

3.2 | Identification of additional SHDRA patients

To expand the cohort of patients with SHDRA we interrogated the

100KGP database further and identified a homozygous c.1410C > G:

p.Tyr470Ter TMEM260 variant in Family 2 (Figure 1E). F2-II-2

exhibited a common arterial trunk, tricuspid atresia, VSD, partial

anomalous pulmonary venous connection, bilateral hearing loss, global

developmental delay, protein losing enteropathy and deteriorating

renal function from the age of 15 months (Figure S4). Multi-organ
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failure following cardiac surgery led to death at age 5 (Table S1, Sup-

plementary Case Histories).

Through international collaboration, we uncovered three further

families ascertained via WES (Figure 1E,F). This included a novel

c.1644del:p.Pro549LeufsTer46 allele in trans with the previously

described2 c.1393C > T:p.Gln465Ter in a sib-pair (Family 3). The elder

brother presented with type I TA, mild truncal valve insufficiency, a

large VSD, with normal renal function (max. Creatinine of 39 μmoL/L)

and normal neurodevelopment at the of 5 years. The younger brother

was born with Type I TA, mild to moderate truncal valve insufficiency

and a large VSD (Video S1). A few days after cardiac surgery he devel-

oped severe chylothorax and progressive renal failure (Figure S5) and

died at approaching 4 months from multi-organ failure. In Family 4 we

identified previously described2 homozygous c.1698_1701del:p.

Tyr567ThrfsTer27 TMEM260 variant in 2 year old boy with Type I TA

and VSD, and normal renal function (maximum creatinine level of

37 μmoL/L) and normal neurodevelopment. In Family 5 we identified

novel compound-heterozygous TMEM260 variants: c.193-2A > G and

c.1744G > C:p.Glu582Gln in a girl who died at the age of 4 months.

The missense variant is predicted damaging by SIFT/PolyPhen2. The

girl was born with TA type I, hypoplastic right ventricle, small main

and branch pulmonary arteries, VSD and atrial septal defect. During

her neonatal period, she developed necrotizing enterocolitis with per-

foration of transverse colon, renal impairment (Figure S6) and died at

4 months. Type I TA and VSD were detected antenatally in the pro-

band's sibling (Figure S7) and the pregnancy was terminated at

22 weeks. The same compound-heterozygous TMEM260 variants

were also identified in the foetus.

3.3 | SHDRA carrier frequency is 0.7–7 per 1000
individuals

Next, we estimated the carrier frequency of SHDRA using a range of

stringency thresholds (Figure S8A). The most stringent criteria

included only variants that would be predicted to result in loss-of-

F IGURE 1 Clinical and variant spectrum of SHDRA. (A) Pedigree of Family 1. (B) IGV screenshot showing Illumina read-alignments supporting
a rare deletion of TMEM260. Split read pairs (red) indicate the start and end of the deletion, concomitant with a drop in coverage. The deletion is
inherited from the mother and resolves the Mendelian inconsistency. Figure S9 shows a zoomed in view of c.344G > A. (C) RT-PCR results for
Family 1. A larger band is seen in all samples, representing the wild-type allele. Smaller bands are seen in both paternal and maternal samples.
(D) Custom UCSC session showing position of the maternal deletion and paternal c.344G > A. RT-PCR primer positions are indicated by in silico
PCR. FASTA sequences generated by Sanger sequencing (Blat Search) indicate exon 3 skipping in the father and exon 2–3 skipping in the mother.
(E) Pedigrees and genetic segregation results for four other families with biallelic TMEM260 variants. NA, DNA unavailable; *, sequencing as part
of the 100KGP; +, exome sequencing. (F) Distribution of variants found in this study. c.1393C > T and c.1689_1701delCTAT (double circles)
were previously described.2 The last three exons of isoform ENST00000538838 (grey) are non-coding, hence the only variants to affect both
isoforms are c.193-2A > G, c.344G > A and the deletion [Colour figure can be viewed at wileyonlinelibrary.com]
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function (without low-confidence flags) and known ClinVar patho-

genic or likely pathogenic variants. The least stringent criteria included

all variants with a CADD score over 30, a spliceAI score over 0.8 as

well as loss-of-function alleles and ClinVar pathogenic and likely path-

ogenic alleles. This analysis showed that per-ancestry gene carrier rate

(GCR) for TMEM260 ranges between 0.001 and 0.007 for least strin-

gent parameters to 0.0007–0.005 for the most stringent. Only 16/94

predicted deleterious variants using the lowest stringency threshold

are missense variants (Figure S8B). The GCR was found to be higher

in individuals with African/African–American ancestry and lowest in

Finnish ancestry. The higher GCR in the African/African–American

population is due to a possible founder variant (p.Lys696ThrfsTer7,

rs568247949) which has “Likely pathogenic” status in ClinVar with a

single submission (SCV000992576.2).

4 | DISCUSSION

We present eight individuals, from five independent families, with

biallelic TMEM260 variants (Figure 1). In combination with clinical data

published previously,2 our results suggest congenital cardiac mal-

formations to be the most consistent phenotype of SHDRA. All

12 patients are reported to have VSD and 10/12 had TA (Table 1). In

most of these patients, VSD is likely to be secondary to TA. Notably, TA

is one of the rarest congenital cardiac anomalies with few known genetic

associations in NKX2-5,4 NKX2-6,5 GATA66 as well as TBX1.7 Interest-

ingly, TMEM260, is predicted to be one of 1442 target genes for GATA6

predicted using known transcription factor binding site motifs from the

TRANSFAC dataset.8 The JASPAR database of transcription factor bind-

ing sites predicts a GATA6 binding site within intron 5 of TMEM260

although the functionality of this motif is unknown.9

Our results show that the renal phenotype of SHDRA is highly

variable. Horseshoe kidney and cysts were noted in one patient each.

The renal failure seen in three individuals could be pre-renal injury

and acute tubular necrosis secondary to cardiac failure and systemic

illness. However, the decline in glomerular filtration prior to the onset

of cardiac failure in F2-II-2 suggests the possibility of underlying renal

dysfunction. Further studies should address whether the variable

renal involvement is secondary to cardiac complications or a primary

component of the condition. The intra-familial variability in renal phe-

notype indicates that this may not be solely due to the precise

TMEM260 variant(s) that are involved. A more likely hypothesis is that

there is a congenital predisposition to renal failure, leaving the individ-

ual vulnerable to a rapid deterioration that can be precipitated by clin-

ical (e.g., cardiac/intestinal) insults.

The combination of congenital heart disease, especially con-

otruncal defects with renal abnormalities is unusual. Conotruncal

abnormalities are seen in 22q11.21 deletion syndrome, in which renal

abnormalities, such as hypoplasia or agenesis of the kidney,

multicystic dysplasia and vesicoureteral reflux, are thought to occur in

over 30% of patients.10 Another dominant disorder with some pheno-

typic overlap, including TA and hypoplastic kidneys, is Townes-Brocks

syndrome (MIM #107480) due to heterozygous mutations in

SALL1.11,12 The association of cardiac, cerebral and renal mal-

formations is also reminiscent of ciliopathies, although generally the

cardiac features linked to these group of disorders do not include TA.

Antenatal detection of severe congenital malformations led to

termination of pregnancy in three cases described here. Out of nine

live born pregnancies, six patients died within the age ranges of

6 weeks to 5 years. One of the two individuals whom survived to

5-years old (F2-II-2) had developmental delay and hearing loss. How-

ever, due to insufficient numbers it is difficult to confidently associate

these features with SHDRA. We note that two other individuals in

the present study who survived beyond their first year, were cogni-

tively normal. Although facial dysmorphism was reported in 1/4 of the

original cohort, that feature was not replicated here.

This study substantially expands the known mutation spectrum of

SHDRA. Including the patients presented here, a total of eight differ-

ent TMEM260 variants in 12 individuals from seven families have now

been identified (Figure 1F). Of these, two variants are stop-gains, two

are frameshifts, one is a multi-exon deletion, two disrupt splicing and

one is missense. All variants are supported by in silico tools, including

CADD scores, which are 28.3–41 (Table 1). The distribution of the

variants confirms that variants affecting only the longer isoform are

sufficient to cause SHDRA.

We show that the carrier frequency for SHDRA could be up to 1 in

140 in certain populations (Figure S8). This analysis also identified a

potential founder variant in the African/African–American population

that requires further functional studies to validate its “Likely Pathogenic”
status in ClinVar. The c.1698_1701del seen in Family 4 and in an Arabic

family described previously2 may also represent a founder mutation.

In conclusion, our description of five families with biallelic TMEM260

variants confirms the genetic basis of SHDRA and helps delineate the

mutational/phenotypic spectrum of the condition. The strong association

with TA has important implications for genetic counselling, prenatal diag-

nostics as well as postnatal targeted genetic testing.
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