80 research outputs found

    Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters

    Get PDF
    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions

    Sources of Airborne Endotoxins in Ambient Air and Exposure of Nearby Communities—A Review

    Get PDF
    Endotoxin is a bioaerosol component that is known to cause respiratory effects in exposed populations. To date, most research focused on occupational exposure, whilst much less is known about the impact of emissions from industrial operations on downwind endotoxin concentrations. A review of the literature was undertaken, identifying studies that reported endotoxin concentrations in both ambient environments and around sources with high endotoxin emissions. Ambient endotoxin concentrations in both rural and urban areas are generally below 10 endotoxin units (EU) m−3; however, around significant sources such as compost facilities, farms, and wastewater treatment plants, endotoxin concentrations regularly exceeded 100 EU m−3. However, this is affected by a range of factors including sampling approach, equipment, and duration. Reported downwind measurements of endotoxin demonstrate that endotoxin concentrations can remain above upwind concentrations. The evaluation of reported data is complicated due to a wide range of different parameters including sampling approaches, temperature, and site activity, demonstrating the need for a standardised methodology and improved guidance. Thorough characterisation of ambient endotoxin levels and modelling of endotoxin from pollution sources is needed to help inform future policy and support a robust health-based risk assessment process

    Energy recovery from human faeces via gasification : a thermodynamic equilibrium modelling approach

    Get PDF
    Non-sewered sanitary systems (NSS) are emerging as one of the solutions to poor sanitation because of the limitations of the conventional flush toilet. These new sanitary systems are expected to safely treat faecal waste and operate without external connections to a sewer, water supply or energy source. The Nano Membrane Toilet (NMT) is a unique domestic-scale sanitary solution currently being developed to treat human waste on-site. This toilet will employ a small-scale gasifier to convert human faeces into products of high energy value. This study investigated the suitability of human faeces as a feedstock for gasification. It quantified the recoverable exergy potential from human faeces and explored the optimal routes for thermal conversion, using a thermodynamic equilibrium model. Fresh human faeces were found to have approximately 70-82 wt.% moisture and 3-6 wt.% ash. Product gas resulting from a typical dry human faeces (0 wt.% moisture) had LHV and exergy values of 17.2 MJ/kg and 24 MJ/kg respectively at optimum equivalence ratio of 0.31, values that are comparable to wood biomass. For suitable conversion of moist faecal samples, near combustion operating conditions are required, if an external energy source is not supplied. This is however at 5% loss in the exergy value of the gas, provided both thermal heat and energy of the gas are recovered. This study shows that the maximum recoverable exergy potential from an average adult moist human faeces can be up to 15 MJ/kg, when the gasifier is operated at optimum equivalence ratio of 0.57, excluding heat losses, distribution or other losses that result from operational activities

    Non-isothermal thermogravimetric kinetic analysis of the thermochemical conversion of human faeces

    Get PDF
    The “Reinvent the Toilet Challenge” set by the Bill & Melinda Gates Foundation aims to bring access to adequate sanitary systems to billions of people. In response to this challenge, on-site sanitation systems are proposed and being developed globally. These systems require in-situ thermal treatment, processes that are not well understood for human faeces (HF). Thermogravimetric analysis has been used to investigate the pyrolysis, gasification and combustion of HF. The results are compared to the thermal behaviour of simulant faeces (SF) and woody biomass (WB), along with the blends of HF and WB. Kinetic analysis was conducted using non-isothermal kinetics model-free methods, and the thermogravimetric data obtained for the combustion of HF, SS and WB. The results show that the devolatilisation of HF requires higher temperatures and rates are slower those of WB. Minimum temperatures of 475 K are required for fuel ignition. HF and SF showed similar thermal behaviour under pyrolysis, but not under combustion conditions. The activation energy for HF is 157.4 kJ/mol, relatively higher than SS and WB. Reaction order for HF is lower (n = 0.4) to WB (n = 0.6). In-situ treatment of HF in on-site sanitary systems can be designed for slow progressive burn

    Non-isothermal drying kinetics of human feces

    Get PDF
    The non-isothermal drying behavior and kinetics of human feces (HF) were investigated by means of thermogravimetric analysis to provide data for designing a drying unit operation. The effect of heating rate and blending with woody biomass were also evaluated on drying pattern and kinetics. At low heating rate (1 K/min), there is effective transport of moisture, but a higher heating rate would be necessary at low moisture levels to reduce drying time. Blending with wood biomass improves drying characteristics of HF. The results presented in this study are relevant for designing non-sewered sanitary systems with in-situ thermal treatment

    Field testing of a prototype mechanical dry toilet flush

    Get PDF
    A prototype of a non-fluid based mechanical toilet flush was tested in a semi-public, institutional setting and in selected peri-urban households in eThekwini municipality, Republic of South Africa. The mechanism's functionality and users' perception of the flush were assessed. User perception varied depending on background: Users accustomed to porcelain water flush toilets were open to, yet reserved about the idea of using a waterless flush in their homes. Those who commonly use Urine Diversion Dehydration Toilets were far more receptive. The user-centred field trials were complemented by a controlled laboratory experiment, using synthetic urine, -faeces, and -menstrual blood, to systematically assess the efficiency of three swipe materials to clean the rotating bowl of the flush. A silicone rubber with oil-bleed-effect was found to be the best performing material for the swipe. Lubrication of the bowl prior to use further reduced fouling. A mechanical waterless flush that does not require consumables, like plastic wrappers, is a novelty and could – implemented in existing dry toilet systems – improve acceptance and thus the success of waterless sanitation

    Risk assessments for quality-assured, source-segregated composts and anaerobic digestates for a circular bioeconomy in the UK

    Get PDF
    A circular economy relies on demonstrating the quality and environmental safety of wastes that are recovered and reused as products. Policy-level risk assessments, using generalised exposure scenarios, and informed by stakeholder communities have been used to appraise the acceptability of necessary changes to legislation, allowing wastes to be valued, reused and marketed. Through an extensive risk assessment exercise, summarised in this paper, we explore the burden of proof required to offer safety assurance to consumer and brand-sensitive food sectors in light of attempts to declassify, as wastes, quality-assured, source-segregated compost and anaerobic digestate products in the United Kingdom. We report the residual microbiological and chemical risks estimated for both products in land application scenarios and discuss these in the context of an emerging UK bioeconomy worth £52bn per annum. Using plausible worst case assumptions, as demanded by the quality food sector, risk estimates and hazard quotients were estimated to be low or negligible. For example, the human health risk of E. coli 0157 illness from exposure to microbial residuals in quality-assured composts, through a ready-to-eat vegetable consumption exposure route, was estimated at ~10-8 per person per annum. For anaerobic digestion residues, 7 x10-3 cases of E. coli 0157 were estimated per annum, a potential contribution of 0.0007 percent of total UK cases. Hazard quotients for potential chemical contaminants in both products were insufficient in magnitude to merit detailed quantitative risk assessments. Stakeholder engagement and expert review was also a substantive feature of this study. We conclude that quality assured, source-segregated products applied to land, under UK quality protocols and waste processing standards, pose negligible risks to human, animal, environmental and crop receptors, providing that risk management controls set within the standards and protocols are adhered to

    Pyogenic spondylitis

    Get PDF
    Pyogenic spondylitis is a neurological and life threatening condition. It encompasses a broad range of clinical entities, including pyogenic spondylodiscitis, septic discitis, vertebral osteomyelitis, and epidural abscess. The incidence though low appears to be on the rise. The diagnosis is based on clinical, radiological, blood and tissue cultures and histopathological findings. Most of the cases can be treated non-operatively. Surgical treatment is required in 10–20% of patients. Anterior decompression, debridement and fusion are generally recommended and instrumentation is acceptable after good surgical debridement with postoperative antibiotic cover
    corecore