56 research outputs found

    Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited

    Get PDF
    The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DC

    You are Not Welcome: Social Exchanges between Female Spider Monkeys (Ateles geoffroyi)

    Get PDF
    Group living leads to competition for food between group members. Two types of intragroup food competition may occur: scramble competition, in which all group members use the same resource, such that feeding opportunities are equal for everyone; and contest competition, in which some group members monopolize resources through aggression and dominance. In species in which females disperse from the natal group and immigrate into other groups, immigrant females increase group size and thus possibly food competition. Under these circumstances, other females may use aggression to discourage new females from joining the group. We assessed the distribution of aggression, embraces, and kisses among female spider monkeys (Ateles geoffroyi) in relation to group tenure. We recorded social interactions during 1688 10-min focal animal samples on 11 females in Santa Rosa, Costa Rica. We found that aggression was rare between long-term resident females and aggression rates were not higher during feeding than in other contexts, suggesting there was little contest competition. Long-term residents and less recently immigrant females showed higher aggression rates toward the most recent immigrants than toward other females, especially during the first months after a female immigrated, which coincided with the dry season. We did not find similar patterns for embrace and kiss. These results suggest that other females target aggression toward the most recent immigrants to reduce scramble competition. This finding suggests that group tenure should be included in socioecological models for species with female dispersal. © 2017 Springer Science+Business Media, LL

    The “edge effect” phenomenon: deriving population abundance patterns from individual animal movement decisions

    Get PDF
    Edge effects have been observed in a vast spectrum of animal populations. They occur where two conjoining habitats interact to create ecological phenomena that are not present in either habitat separately. On the individual-level, an edge effect is a change in behavioral tendency on or near the edge. On the population-level, it is a pattern of population abundance near an edge that cannot be explained in terms of either habitat in isolation. That these two levels of description exist suggests there ought to be a mathematical link between them. Here, we make inroads into providing such a link, deriving analytic expressions describing oft-observed population abundance patterns from a model of movement decisions near edges. Depending on the model parameters, we can see positive, negative, or transitional edge effects emerge. Importantly, the distance over which animals make their decisions to move between habitats turns out to be a key factor in quantifying the magnitude of certain observed edge effects
    • …
    corecore