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Abstract Edge effects have been observed in a vast spec-
trum of animal populations. They occur where two conjoin-
ing habitats interact to create ecological phenomena that are
not present in either habitat separately. On the individual-
level, an edge effect is a change in behavioral tendency on or
near the edge. On the population-level, it is a pattern of pop-
ulation abundance near an edge that cannot be explained in
terms of either habitat in isolation. That these two levels of
description exist suggests there ought to be a mathematical
link between them. Here, we make inroads into providing
such a link, deriving analytic expressions describing oft-
observed population abundance patterns from a model of
movement decisions near edges. Depending on the model
parameters, we can see positive, negative, or transitional
edge effects emerge. Importantly, the distance over which
animals make their decisions to move between habitats turns
out to be a key factor in quantifying the magnitude of certain
observed edge effects.
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Introduction

Edges separating habitats affect the behavior and demo-
graphics of animal populations across a wide range of taxa,
from fish to birds, from insects to mammals [e.g., Lidicker
and William (1999), Laurance et al. (2004), Batáry et al.
(2009), and Macreadie et al. (2010)]. These so-called “edge
effects” are multi-faceted and depend on the nature of the
edge itself, the habitats on either side, and the behavioral
tendencies of the animals (Ries et al. 2004). However, there
is a common feature: that the edge between two habitats can
affect animal behavior in ways that cannot be explained in
terms of either habitat in isolation.

The implication of this phenomenon is that ecosystem
services provided by a landscape cannot be understood
purely by assessing (i) how much of each type of habitat
is present in the landscape, and (ii) which ecosystem ser-
vices each habitat provides. Rather, the interaction between
habitats, as well as the geometric details of how they tes-
sellate the landscape, can have a large effect. Moreover, the
effects can be complex and difficult to unravel. For exam-
ple, the question “in which situations it is better to build a
Single Large conservation area Or Several Small ones?” is
the subject of ongoing debate (the SLOSS debate), despite
many decades of research. Much of the debate boils down
to understanding the myriad possible effects of edges of
the conservation areas on the animals living there (Burkey
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1989; McNeill and Fairweather 1993; Salomon et al. 2002;
Tjrve 2010).

As well as these concerns, understanding how and why
edge effects emerge is vital for accurately estimating pop-
ulation demographics. Resource selection analysis (Manly
et al. 2002), though very widely used, traditionally assumes
that population abundance is a function of the underlying
habitat quality. On the other hand, an edge effect means that
population abundance in a given habitat is different near
the edge to within the middle of a large patch of the same
habitat-type. Some recent studies (Barnett and Moorcroft
2008; Potts et al. 2014a) point to the idea that this contra-
diction might be resolved by incorporating movement into
the resource selection procedure. After all, animals are not
able to assess the whole landscape before deciding where
to reside, as they are limited by their ability to move and to
perceive the surrounding landscape. Therefore, the distance
over which animals are making their decisions to move, as
well as the frequency of those decisions, will likely have a
big effect on the locations at which they tend to be observed.

Indeed, the phrase “edge effect” is used interchange-
ably to refer to individual-level movement decisions and
population-level patterns. On the individual-level, an edge
effect means a change in an animal’s movement patterns
near an edge (Laurance et al. 2004; Schultz et al. 2012). For
example, this can be a propensity either to cross edges—a
positive edge effect, or avoid them—a negative edge effect.
On the population level, a negative (resp. positive) edge
effect is reported if the population abundance is lower (resp.
higher) than average near an edge (Laurance et al. 2004;
Batáry et al. 2009). There are also transitional edge effects,
where a sharp edge between habitats causes a much more
gradual transition in population abundance [e.g. Lidicker
and William (1999)]. This conflation of language suggests
that individual-level decisions about how to move near
edges, taking place on a relatively small spatio-temporal
scale, ought to be responsible for patterns of abundance
observed on a much larger scale. If so, it should be pos-
sible to derive mathematically the various population-level
patterns typically observed at edges from rules describing
the underlying movement decisions of individual animals.
The aim of this paper is to make inroads into providing such
mathematical analysis.

We set up a stochastic model of individual movement
decisions near a habitat edge that explicitly incorporates the
frequency those decisions—i.e., how far into the future is
an animal looking as it makes its decision to move in a
particular direction. We use this model to derive a partial
differential equation (PDE) describing the population abun-
dance distribution that arises from many animals moving
according to such movement rules. The steady-state of the
PDE is solved exactly to give an analytic expression of the
predicted population abundance patterns. Depending on the

input parameters, we observe either positive, negative, or
transitional edge effects. Importantly, the distance an animal
is likely to move between successive habitat-selection deci-
sions is key to the scale of these patterns. We compare
our results to two other approaches to deriving PDEs from
individual-level decisions.

We focus on edge effects caused by habitat selection
decisions made as the animal moves. The model uses a
simple landscape consisting of two distinct habitats, with
the “edge” between them being implicitly defined (Fig. 1).
Sometimes, edge effects occur because the edge provides
a unique habitat in and of itself. In such cases, the cor-
rect model would have at least three habitats, with a thin
“edge habitat” squeezed between the other two. Indeed,
more complicated models could incorporate larger numbers
of habitats in a variety of geometric configurations. While
our modeling framework can be readily extended to explore
these scenarios numerically [see, e.g., Potts et al. (2014a)],
we focus here on a case simple enough to gain clear analytic
insight.

The paper is organized as follows. The “Modelling move-
ment near edges” section sets up the movement model. “A
partial differential equation approximation” section derives
the population abundance patterns. “Comparison with other

Fig. 1 Model habitat. To model a habitat edge, we use a simple envi-
ronment with two habitats, A and B. The weighting for moving from A
to B is given by β, whereas α denotes the weighting for moving from
B to A
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approaches” section examines other approaches to deriv-
ing abundance patterns, comparing them to ours. Discus-
sion and concluding remarks are given in “Discussion and
conclusions” section.

Modelling movement near edges

The general movement kernel framework

The model is based on a discrete-time movement kernel
kτ (z|x, θ0, E), which describes the probability of an animal
moving through an environment E to position z at a time
τ in the future, given that it is currently at a position x and
has arrived there on a bearing θ0. These often appear in the
ecological literature as step selection functions and can be
readily fitted to movement data using techniques that are
now relatively standard (e.g., Fortin et al. 2005; Forester et
al. 2009; Merkle et al. 2014; Thurfjell et al. 2014). They
enable the use of every location in a data set, together
with environmental information, to uncover the effects of
landscape covariates on animal movement. Therefore, it is
sensible to begin with the description of a movement kernel
so that our theory fits in with the movement models that are
typically used by landscape ecologists.

Here, we consider a form of movement kernel that con-
tains a random element to model the unknown drivers
behind movement, together with a weighting function that
models the effect of the environment on movement. The
random element is a probability distribution, φτ (z|x, θ0), of
possible positions after moving for a time τ , disregarding
environmental effects. The weighting function for an animal
moving through a static, heterogeneous environment can be
written as W [H(z),H(x)], where H(x) is the habitat type
at x, where the animal currently resides, and H(z) is the
habitat at z, where the animal is choosing to move. As such,
we arrive at the following formula for the movement kernel
(Potts et al. 2014a) (henceforth dropping the explicit depen-
dence on the environment, E, as we assume this remains
constant in time)

kτ (z|x, θ0) = g(x)−1φτ (z|x, θ0)W [H(z),H(x)], (1)

where g(x) is a normalizing function

g(x) =
∫

Ω

φτ (z|x, θ0)W [H(z),H(x)]dz, (2)

and Ω is the study area, so that kτ (z|x, θ0) is a probability
distribution. Though we separate out the resource weighting
function W from probability distribution φτ , which contains
information about the distance an animal tends to move in
a time-step τ , the two aspects of the movement kernel are
intrinsically linked. Indeed, one should pick τ to reflect the
frequency with which the animal makes a decision regarding

which habitats to move from and to. Consequently, given
the speed at which the animal moves, the standard deviation
of φτ reflects the spatial scale over which such a decision is
made.

A model of movement near edges

To gain analytic insight into how the scale of behavioral
decisions affect the population-level patterns near edges, we
examine a particular one dimensional (1D) version of Eq. 1.
For simplicity, we assume that the resource independent
movement kernel φτ (z|x, θ0) = ρτ (z−x) is only dependent
on the difference z−x. Furthermore, we assume that ρτ (r) is
normally distributed with mean 0 and standard deviation σ .

The landscape is modeled as a unit interval consisting of
two habitats, A and B. Habitat A consists of the left-hand
half of the interval, [0, 1/2], and habitat B consists of the
right-hand half, (1/2, 1], so that H(x) = A for x ∈ [0, 1/2]
and H(x) = B for x ∈ (1/2, 1]. The weighting func-
tion W [H(z),H(x)] is given by W [A, A] = W [B, B] =
1 (the weighting given for staying in the same habitat),
W [A, B] = α (the weighting given for moving from B to
A), and W [B, A] = β (the weighting given for moving from
A to B). In summary, the movement kernel for this model is
as follows

kτ (z|x) = exp[−(z − x)2/2σ 2]W [H(z),H(x)]
g(x)σ

√
2π

, (3)

where g(x) is a normalizing function ensuring that∫ 1
0 kτ (z|x)dz = 1 for each x ∈ [0, 1]. Figure 1 gives a pic-

ture of this situation, demonstrating how this can be viewed
as a projection of a more realistic 2D scenario.

A partial differential equation approximation

To derive the population abundance patterns that emerge
from our movement model, we use a partial differential
equation (PDE) formalism. We make use of recent develop-
ments in the theory of transport equations (TEs), introduced
by Othmer et al. (1988) and recently reviewed by Hillen and
Painter (2013). We refer the reader to those papers to obtain
a full description of the underlying mathematical frame-
work, rather than repeating it here. Instead, we go through
the details in a brisk fashion, for the purposes of introduc-
ing notation and relating TE theory to the movement kernel
formalism.

The key ingredient for our TE is the turning kernel, which
gives the probability Tμ(x, v, v0) of an animal at position x

and moving with velocity v0, turning to move with veloc-
ity v, given that it makes a turn. Turns are made at a rate
μ. The turning kernel is not precisely equivalent to the
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movement kernel (1); however, we can translate between the
two formalisms using the following ansatz

T2/τ (x, v, v0) = τkτ (x + τv|x, θv0), (4)

where θv0 is the direction of v0. The intuition behind this
ansatz is that the rate of turning in the turning kernel descrip-
tion (left-hand side) should be inversely proportional to the
length of a time-step in the movement kernel description
(right-hand side), i.e., μ ∝ 1/τ . That the constant of propor-
tionality is 2 is justified later, when we derive drift terms in
PDE expressions both from the turning kernel (10, 18) and
the movement kernel (21, 22) and notice that they are equal.
Were μ set to be a/τ for some a �= 2 then these drift terms
would not coincide, but would differ by a factor of a/2.

The turning kernel feeds into an integro-differential
equation describing the probability p(t, x, v) of an animal
having particular space-time-velocity co-ordinates (Hillen
2006). For the purposes of this paper, we call this the trans-
port equation (TE), given in 1D as follows (Othmer et al.
1988)

∂p

∂t
(t, x, v) + v

∂

∂x
p(t, x, v)

= μ

∫
V

Tμ(x, v, v0)p(t, x, v0)dv0 − μp(t, x, v), (5)

where p(t, x, v) is the probability of being at position x

at time t , moving with velocity v, and V is the space
of possible velocities for the animal. Note that Eq. 5 can
be generalized to arbitrary dimensions if required (Othmer
et al. 1988).

For our model of movement near edges (3), the turning
kernel can be written as

q(x, v) = T2/τ (x, v, v0)

= ρτ (τ |v|)W [H(x + τv), H(x)]∫
V

ρτ (τ |ν|)W [H(x + τν), H(x)]dν
, (6)

which is no longer dependent upon the velocity v0 at which
the animal is travelling before it turns.

By writing u(x, t) for the positional probability density,
and plugging Eq. 6 into the general equation for the TE
(5), we obtain the following integro-differential equation
describing the evolution of p(t, x, v)

∂p

∂t
(t, x, v) + v

∂

∂x
p(t, x, v) = μ[u(x, t)q(x, v)

−p(t, x, v)],
u(x, t) =

∫
V

p(t, x, v)dv. (7)

To turn the integro-PDE of Eq. 7 into an approximate
PDE in u(x, t), there are at least the following three strate-
gies: parabolic scaling, hyperbolic scaling, and moment clo-
sure (Hillen 2006; Hillen and Painter 2013). The parabolic

scaling technique requires that the expectation of the veloc-
ity, c(x), is small enough to be neglected. This turns out
not to be the case for our model (see Eq. 15 below), so this
scaling method is not appropriate for our study.

The hyperbolic scaling, on the other hand, does not
impose such requirements on c(x). However, as explained in
(Hillen and Painter 2013), the mathematical theory requires
that we pick a small number ε > 0 such that

ϑ = εt, ξ = εx. (8)

If this rescaling were applied to data, it would be necessary
to ensure that ϑ has units such that the time scale over which
the data were gathered is roughly ϑ = 1, and ξ has units
such that the spatial scale over which the data were gathered
is roughly ξ = 1. Notice that for this to be true, the mean
speed has to be of order 1 in the units chosen.

To give a biological example to motivate this choice of
units, consider the study of caribou movement from Potts
et al. (2014a). These data were taken over a 123-day calv-
ing season, from 1 May to 1 September. Each caribou herd
ranged over an area whose width was up to 100 km. Con-
secutive position measurements were taken at a resolution
of 2 h and each caribou moved around 0.2 km between 2-
h fixes, so one unit of t is 2 h and one unit of x is 0.2 km.
In this case, we might take ε = 10−3, so that 1 unit of ϑ is
2000 h and 1 unit of ξ is 200 km. Then the calving season
is ϑ = 1.476 and the home range width is roughly ξ = 0.5,
both of order 1 in the chosen units.

Using this hyperbolic scaling and returning to the orig-
inal variables (see Appendix A for details), we obtain the
following PDE in (x, t) coordinates

ε2 ∂u

∂t
(x, t) = τ

2

∂2

∂x2
[D(x)u(x, t)] − ∂

∂x
[c(x)u(x, t)]

+τ

2

∂

∂x

[
c(x)

∂c(x)

∂x
u(x, t)

]
, (9)

where

c(x) = 1

τ

∫ 1

0
(z − x)kτ (z|x)dz, (10)

and

D(x) = 1

τ 2

∫ 1

0
(z − x)2kτ (z|x)dz − c(x)2. (11)

We also impose the following zero-flux boundary condi-
tions

{
τ

2

∂

∂x
[D(x)u(x, t)]−[c(x)u(x, t)]+ τ

2

[
c(x)

∂c

∂x
u(x, t)

]}∣∣∣∣
x=0,1

= 0. (12)

We are interested in calculating long-term population abun-
dance. This is given by the steady-state distribution, u∗(x),
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which is the solution to the following ordinary differential
equation (ODE)

τ

2

d2

dx2
[D(x)u∗(x)] − d

dx
[c(x)u∗(x)] + τ

2

d

dx

[
c(x)

dc

dx
u∗(x)

]
= 0,(13)

obtained by setting the left-hand side of Eq. 9 to zero. Notice
that Eq. 13 does not depend upon the rescaling constant ε.
The solution to Eq. 13 with boundary conditions derived
from Eq. 12 is given as follows [this result is well-known;

see, e.g., Moorcroft and Barnett (2008, Appendix A) for a
derivation in the context of animal movement]

u∗(x) = CH

D(x)
exp

[
1

τ

∫ x

0.5

2c(s) − τ dc
ds

c(s)

D(s)
ds

]
, (14)

where CH is a normalizing constant ensuring u∗(x) inte-
grates to 1 across the domain [0, 1].

For the movement kernel in our model (3), the integrals
from Eqs. 10 and 11 can be calculated directly to be

c(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ

τ
√

2πg(x)

[
(β − 1) exp

(−(1−2x)2

8σ 2

)
+ exp

(−x2

2σ 2

)

−β exp
(−(1−x)2

2σ 2

)]
if 0 ≤ x ≤ 1/2,

σ

τ
√

2πg(x)

[
(1 − α) exp

(−(1−2x)2

8σ 2

)
+ α exp

(−x2

2σ 2

)

− exp
(−(1−x)2

2σ 2

)]
if 1/2 < x ≤ 1,

(15)

D(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ

τ 2
√

2πg(x)

[
−x exp

(−x2

2σ 2

)

−(1 − β) 1−2x
2 exp

(−(1−2x)2

8σ 2

)

+σ(1 − β)
√

π
2 erf

(
1−2x

2
√

2σ

)
+ σ

√
π
2 erf

(
x√
2σ

)

−β(1 − x) exp
(−(1−x)2

2σ 2

)

+σβ
√

π
2 erf

(
1−x√

2σ

)]
− c(x)2 if 0 ≤ x ≤ 1/2,

σ

τ 2
√

2πg(x)

[
−xα exp

(−x2

2σ 2

)

−(α − 1) 1−2x
2 exp

(−(1−2x)2

8σ 2

)

+σ(α − 1)
√

π
2 erf

(
1−2x

2
√

2σ

)
+ σα

√
π
2 erf

(
x√
2σ

)

−(1 − x) exp
(−(1−x)2

2σ 2

)

+ σ
√

π
2 erf

(
1−x√

2σ

)]
− c(x)2 if 1/2 < x ≤ 1,

(16)

where erf(−) is the error function and

g(x) = 1

σ
√

2π

∫ 1

0
exp[(z − x)2/2σ 2]W [H(z),H(x)]dz

=
⎧⎨
⎩

1
2

[
(1 − β)erf

(
1−2x

2
√

2σ

)
+ erf

(
x√
2σ

)
+ βerf

(
1−x√

2σ

)]
if 0 ≤ x ≤ 1/2,

1
2

[
(1 − α)erf

(
2x−1
2
√

2σ

)
+ αerf

(
x√
2σ

)
+ erf

(
1−x√

2σ

)]
if 1/2 < x ≤ 1.

(17)

Technical note In Fig. 2, we see that the diffusion coeffi-
cient D(x) can be non-differentiable at the transition point
0.5, while the drift velocity c(x) can have a jump at 0.5.
Hence our limiting Eq. 13 has non-smooth coefficients and
so solutions to Eq. 13 must be understood in the weak sense.
In Appendix B, we outline how weak solutions are defined
in our case and show that the explicit solution (14) is a
weak solution, as long as D(x) is continuous. If D(x) is

continuous, as in the examples in Fig. 2e–g, the solution
at x = 0.5 is simply u∗(0.5) = CH /D(0.5). However,
in certain cases not studied here (e.g., if α, β > 1 but
α �= β), D(x) is discontinuous at x = 0.5, so u∗(x)

is discontinuous at x = 0.5, so Eq. 14 is no longer a
weak solution in the sense described on Appendix B. These
cases are thus not amenable to the exact analysis described
here.
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Equations 14–17 give the predicted population abun-
dance patterns that emerge from the movement kernel in
Eq. 3. Though ostensibly formidable, Eqs. 15–17 are simply
sums of well-known special functions, so can be calculated
very quickly with a desktop computer.

In Fig. 3, we show examples of the steady-state solu-
tion (14). We examine qualitatively the effects of varying
α, β, and σ , including cases where α, β < 1, α, β > 1
and α < 1 < β, comparing them to situations found
in nature. Positive, negative, and transitional edge effects
emerge, depending on the values chosen for α and β. Fur-
thermore, the width of these edge effects, observed at the
centre of each plot, increases as the distance an animal tends
to move between movement decisions, given by σ , increases
(Figs. 3a, d, 4).

Comparison with other approaches

In this section, we describe two slightly different approaches
to constructing a PDE model from a movement kernel.
The first starts with the integro-PDE of Eq. 7 and pro-
ceeds via a moment closure method. This is just a simple
modification of the hyperbolic scaling in section “A partial
differential equation approximation” so bears some atten-
tion. The second was introduced by Patlak (1953) and takes
a first-principles approach (though the resulting algebraic
manipulations are far from simple). Since its popularization
by Turchin (1991), Patlak’s work has been widely used to
study animal movement, so is worth examining here. We
compare the steady state solutions from these approaches
with those of the hyperbolic scaling.

The moment closure approach

The moment closure approach begins with the integro-PDE
of Eq. 7 but, unlike the hyperbolic scaling, requires no
rescaling (see Eq. 8). However, it makes a different (and
somewhat stronger) set of assumptions. In particular, Hillen
and Painter (2013) showed that if

– the momentum of the object settles to its equilibrium
distribution relatively quickly,

– the “pressure tensor” u(t, x)D(x) and “energy flow”
u(t, x)M3(x)/τ 3 are at equilibrium (where M3(x) is the
third moment of the displacement distribution)

then the system given by Eq. 7 can be approximately
described by the following equation

∂u

∂t
= τ

2

∂2

∂x2
[D(x)u(x, t)] − ∂

∂x
[c(x)u(x, t)]. (18)

The steady-state ODE is therefore

τ

2

d2

dx2
[D(x)u∗(x)] − d

dx
[c(x)u∗(x)] = 0, (19)

which, by assuming zero-flux boundary conditions at x =
0, 1, has the following solution

u∗(x) = CM

D(x)
exp

[
2

τ

∫ x

0.5

c(s)

D(s)
ds

]
, (20)

where CM is a normalizing constant ensuring u∗(x)

integrates to 1 across the domain [0, 1]. This solution
only differs from the hyperbolic scaling solution (14) in
that the term τ(dc/ds)c(s)/2 is no longer present in the
integrand.

Patlak’s approach

Patlak (1953) modeled animal movement making straight-
line movements (steps) interspersed with turns. The direc-
tion of a step may be correlated with the previous step,
and there may be some external bias influencing the step-
lengths and turning angles. The strength and direction of
this bias may vary through space. Let τ denote the average
time between successive turns (as is the case in Eq. 1, for
example). Then (Patlak 1953, equation 19ff.) showed that
the following PDE holds approximately

∂u

∂t
(x, t) = 1

d
∇2

x

[
M2(x)

2τ
u(x, t)

]
− ∇x ·

[
M1(x)

τ
u(x, t)

]
,(21)

where d is the number of dimensions in which the animal
is moving, M2(x) is the second moment of the step-length
distribution and M1(x) = (M1(x1), . . . , M1(xd)) is a vec-
tor with ith entry equal to the first moment of the distance
moved between turns in the ith direction. The derivation of
Eq. 21 relies on the assumption that the bias in the move-
ment is not too strong [for a precise explanation of what “too
strong” means in this context, see equations (11) and (16)
in Patlak (1953) and the surrounding text]. A similar result
to Eq. 21 is found earlier, in Chandresekhar (1943, equation
126). In our model d = 1, so we make this assumption for
the rest of the section.

A key contribution of Patlak (1953) was to analyze the
term M1(x) for objects moving with certain types of bias
and persistence. This analysis gave rise to general formu-
lae which have since been popularized in the ecological
literature by Turchin (1991, e.g., equation 1) and used
widely in movement ecology (Turchin 1998). However,
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Fig. 2 Examples of the drift
and diffusion terms. Plots of the
drift term (a–d) given in Eq. 15
and the diffusion term (e–g) in
Eq. 16, for various values of
α, β, σ
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Fig. 3 Emergent edge effects. The steady-state position distributions
from Eq. 14 for various values of σ (measuring the distance an animal
tends to move in a timestep of length τ ), α (the weighting for mov-
ing from the right-half to the left), and β (the weighting for moving
from the left-half to the right). Notice that if both α and β are greater
then 1 then a positive edge effect emerges where animals are drawn
towards the edge. This has been observed in a variety of population, for

example the butterfly populations studied by Batáry et al. (2009). Con-
versely, if α, β < 1 then a negative edge effect emerges. An example
of this is if the edge is delineated by a road separating habitats inhab-
ited by small mammals (Goosem 2001). The butterfly and vole images
are from http://etc.usf.edu/clipart/, licensed under the Free Classroom
License http://etc.usf.edu/clipart/info/license

instead of using these derived formulae, we can calculate
M1(x) directly from the movement kernel of Eq. 3, as
follows

M1(x) =
∫ 1

0
(z − x)kτ (z|x)dz. (22)

Similarly, M2(x) is calculated as

M2(x) =
∫ 1

0
(z − x)2kτ (z|x)dz. (23)

http://etc.usf.edu/clipart/
http://etc.usf.edu/clipart/info/license
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Fig. 4 Edge effect widens with increasing σ . As we increase the dis-
tance that the animal tends to move between successive movement
bouts, represented by σ , so the width of the resulting edge effect in the
population abundance patterns increases. The plot shows this width for
α = β = 3 at different heights h of the utilisation distribution (see

Fig. 3a, d). This width is calculated by taking the two points where
u∗(x) = h and finding the distance between them. Notice that for low
σ (below about 0.05), this effect is roughly linear. For larger σ , the
non-linearity likely comes about from the effect of the landscape edges
at positions 0 and 1

The steady-state solution to Eq. 21 is obtained by setting
the left-hand side of Eq. 21 to zero. In 1D, this gives the
following ODE

d2

dx2

[
M2(x)

2τ
u∗(x)

]
− d

dx

[
M1(x)

τ
u∗(x)

]
= 0, (24)

where u∗(x) is the steady-state of u(x, t). By applying
zero-flux boundary conditions at x = 0, 1, u∗(x) has the
following expression

u∗(x) = CP

M2(x)
exp

[∫ x

0.5

2M1(s)

M2(s)
ds

]
, (25)

where CP is a normalizing constant ensuring u∗(x) inte-
grates to 1 across the domain [0, 1].

The integrals from Eqs. 22 and 23 can be related to the
expressions in Eqs. 15 and 16 using the following identities

M1(x) = τc(x), (26)

M2(x) = τ 2D(x) + M1(x)2. (27)

Hence an exact analytic expression for the steady-state
solution in Eq. 25 can be written.

Comparing the hyperbolic rescaling solution (14, 26,
and 27) to the solution using Patlak’s formalism (25), we
see the following differences:

– The second moment of the velocity in Patlak’s for-
malism is replaced by the variance in the hyperbolic
rescaling.

– The first moment of the velocity in Patlak’s formalism
is supplemented by an additional term, τ

2
dc
dx

c(x), in the
hyperbolic rescaling.

Three-way comparison

In Fig. 5, we compare Eqs. 14, 20, and 25 which describe
steady-state results using the three different formalisms,
for various different values of α and β from our model
described in Fig. 1. Qualitatively, the results are very similar.
For each of the models, a tendency to cross the edge in both
directions leads to higher population abundance near the
edge. Conversely, a tendency not to cross the edge in either
direction leads to lower population abundance near the edge.
Furthermore, the width of the peak or trough in popula-
tion abundance is positively correlated to the distance over
which the animal tends to move each movement bout (rep-
resented by σ ). Thus, we can connect analytically certain
behavioral features of the animal (e.g., the extent over which
it travels between movement decisions) to population-level
patterns near edges.

Despite these similarities between models, there are also
some slight quantitative differences. Particularly, the TE
approaches give more pronounced edge effects in the case
where the effect is positive. These differences can be under-
stood by analyzing the steady-state ODEs for the three
models. Define M to be the left-hand side of the moment
closure steady-state ODE in Eq. 19. Define P to be the anal-
ogous expression for Patlak’s model [the left-hand side of
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Fig. 5 Comparison of three
PDE approximations. The
steady-state position
distributions from Eqs. 14 (the
hyperbolic scaling model; grey
dashed curves), 20 (the moment
closure model; grey solid
curves), and 25 (Patlak’s model;
black curves) for the various
values of σ , α, and β plotted in
Fig. 3

Eq. 24]. Define H to be the analogous expression for the
hyperbolic scaling [the left-hand side of Eq. 13]. Then

P = M + τ

2

d2

dx2
[c2(x)u∗(x)], (28)

H = M + τ

2

d

dx

[
c(x)

dc

dx
u∗(x)

]
. (29)

Equations 28 and 29 show that Patlak’s model includes an
additional (positive) diffusion term not present in the other
two. This has the effect of decreasing the gradient at any
point in the steady-state solution. This is precisely what we
observe in Fig. 5.

Equation 29 shows that the difference between the
moment closure expression and the hyperbolic scaling
occurs in the advection term. Namely, the advection term
in H is less than that in M by an amount equal to

[c(x)c′(x)u∗(x)]′ (here, the apostrophe denotes differen-
tiation with respect to x). Decreasing the advection term
causes gradients to decrease, which is observed in the
difference between the dashed and solid grey curves in
Fig. 5. In our examples, the term [c(x)c′(x)u∗(x)]′ is small
compared to c(x), so its effect on the steady-state curves is
minimal.

Discussion and conclusions

We have shown how population abundance patterns at edges
emerge from edge-crossing decisions encoded in a move-
ment kernel. The distance over which an animal makes
habitat selection decisions turns out to be an important
factor governing the resulting patterns (Fig. 4). Animals
making decisions locally will exhibit minimal edge effect
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compared to those who make decisions based on greater
movement distances. Indeed, if the infinitesimal limit σ →
0 were taken in Eqs. 15–17, then this edge effect would
vanish completely. As well as enabling derivation of pre-
dicted population patterns from movement data, one could
potentially use our results to solve the reverse problem: fit-
ting the steady-state patterns from our models to infer the
underlying parameters (α, β, σ ) that govern the movement.

We have detailed three different methods to analyze
the movement kernel. All of them give qualitatively simi-
lar results, but there are some small numerical differences
owing to the different assumptions being made. In particu-
lar, the positive edge effect is less pronounced when using
the approach of Patlak (1953), since that approach assumes
that any bias in movement is minimal. In contrast, the pos-
itive edge effect arises from having a large crossing bias
near the edge. However, for many ecological purposes, the
numerical differences are likely too small to be of practical
importance.

Although we have focussed on a very simple model
landscape, simple enough to gain analytic insight, our
model setup can readily be extended into more complex
scenarios and higher dimensions. The review by Hillen
and Painter (2013) gives mathematical details for deriv-
ing the hyperbolic limit PDE in a general case, and there
are numerous examples of more complicated movement
kernels that can take into account the various landscape
features encountered by animals (e.g., Rhodes et al. 2005;
Forester et al. 2009; Potts et al. 2014a), or the fact that
animals may move at different speeds in different habi-
tats (i.e., σ becomes σ(x)). However, in such scenarios,
it is likely that the resulting PDE could only be solved
numerically and it would be difficult to disentangle the
effects of different landscape features on the spatial pat-
terns. Our study, of a deliberately simplified model, may
help interpret aspects of spatial patterns that emerge in more
complicated models. Indeed, edge effects were observed in
the model of Potts et al. (2014a), and the present study helps
interpret this in terms of the relative strengths of selection to
move between habitat types.

There are, of course, certain limitations in a simple mod-
eling approach that need to be addressed. Though the spatial
scales inherent in movement decisions appear to play an
important role in emergent edge effects, it is important to
note that only one type of decision has been modeled here:
that related to choice of habitat when close to an edge. In
reality, animals may be making decisions on multiple scales
and these all have an effect on their movement and hence
the population patterns that emerge. Our focus purely on
habitat selection decisions means that one could only expect
the results of this paper to apply in scenarios where such

selections are the primary drivers of movement. For exam-
ple, a data set that includes migratory movement in addition
to movement between different habitats may exhibit rather
different patterns to those observed here. As another exam-
ple, daily behavioral features such as movement to and
from a sleeping place would affect the steady-state patterns
(Moorcroft and Lewis 2006). Such examples would neces-
sitate further analysis, modifying the techniques described
in this study to account for such other behavioral features.

As well as answering the fundamental question of
how population-level patterns may emerge from behav-
ioral process, our analysis makes it possible for ecologists
to test whether observed edge-crossing behavior is suf-
ficient for explaining the population-level phenomena, or
whether there is some other aspect of behavior causing
the population-level effect. For certain species, it has been
conjectured that population abundance may be higher on
edges due to the unique habitat they provide (Didham and
Lawton 1999; Batáry et al. 2009; Macreadie et al. 2010;
Andren and Angelstam 1988). Alternatively, population-
level patterns could arise from a combination of these
factors, together with edge-crossing tendencies. Disentan-
gling the various behavioral mechanisms that may give rise
to edge patterns is a key goal for behavioral- and landscape-
ecology. The mathematical analysis provided here may help
with this endeavor, by deriving expected population pat-
terns that may emerge purely from edge-crossing decisions,
then comparing them to the observed population patterns.
Any disparity between predicted and observed would sug-
gest that the edge-crossing decisions are not the sole driver
of the population patterns, and hence some other effect is in
play.

Much previous theoretical work on edge effects has
been statistical in nature, asking how we determine the
nature of edge effects rather than why edge effects emerge
(Fernández et al. 2002; Zheng and Chen 2000). Though
mechanistic approaches have been proposed, the models
tend to be constructed from observed behavioral tenden-
cies, then fit to data on the population-level, rather than
rigorously derived from underlying movement decisions.
For example, Tyson et al. (2007) looked the positive edge
effects in moth populations elicited by attraction to an
orchard (the edge) between two fields. They modeled moths
via an advection-diffusion equation, with a drift tendency
towards the orchard. Similarly, Fortin et al. (2013) used
an advection-diffusion approach to examine how popula-
tions can cluster near anthropogenically disturbed habitats.
However, in both studies, the advection-diffusion models
are not rigorously derived from the underlying behavioral
mechanisms, despite the fact that small changes in such
mechanisms can lead to very different macroscopic patterns
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(e.g., Belmonte-Beitia et al. 2013). Our study explicitly
makes such derivations, so could be used to parameterize
models such as those of Tyson et al. (2007) or Fortin et al.
(2013) from fine-scale details of the animals’ movements.

The effect of edges on population spread has also
received some rigorous theoretical treatment in recent years.
Ovaskainen and Cornell (2003) derived advection diffusion
equations in situations where the edge crossing probabil-
ity causes a bias in movement. A more general treatment
of diffusion through heterogeneous landscapes followed a
few years later (Ovaskainen 2008). Since then, these tools
have been successfully applied and extended in a variety
of ways (Reeve et al. 2008; Zheng et al. 2009; Reeve and
Cronin 2010; Xiao et al. 2013). On a similar vein, but using
a slightly different approach, Hillen et al. (2013) examined
situations where the density of a diffusing population can
blow-up on the edges of a corridor through a landscape.
However, all these studies rely on taking infinitesimally
small-scale limits of the underlying random walk. Though
this is a reasonable strategy when edge effects are narrow
compared to the width of habitat patches, our study shows
that these techniques may become inaccurate in landscapes
where the distance travelled in each movement bout is not
significantly smaller than the size of habitat patches.

The results given here could also provide insights into
the general mechanistic framework of Ries et al. (2004) for
understanding edge effects. That study examined four key
factors that underlie edge effects, characterized as (i) eco-
logical flows, (ii) access, (iii) resource mapping, and (iv)
species interactions. However, they do not make explicit
the movement decisions that either affect or are affected
by these factors. The techniques given in this study could
help integrate these fine-scale decisions into the mechanis-
tic framework of Ries et al. (2004) and thus enhance their
predictive power.

In summary, our work provides for the first time (as far
as we are aware) an analytical link between the behavioral
decisions of individual animals near edges and the sort of
emergent population abundance patterns often observed in
nature. The techniques provided here should aid in under-
standing why these observed population patterns emerge.
As the ability of behavioral models to accurately repre-
sent reality increases (Potts et al. 2014b), such techniques
will ultimately help predict population demographics in
potential future environments.
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Appendix A

Hillen and Painter (2013) showed that the following PDE
is a good approximation of Eq. 7 when the rescaling from
Eq. 8 is made

∂u

∂ϑ
(ξ, ϑ) = ε

μ

∂2

∂ξ2
[D̃(ξ)u(ξ, ϑ)] − ∂

∂ξ
[c̃(ξ)u(ξ, ϑ)]

+ ε

μ

∂

∂ξ

[
c̃(ξ)

∂c̃(ξ)

∂ξ
u(ξ, ϑ)

]
, (30)

where c̃(ξ) denotes the expectation of q̃(ξ, v) [q̃(ξ, v) is the
turning kernel in units of ξ , see Eq. 6]

c̃(ξ) =
∫
V (ξ)

vq̃(ξ, v)dv, (31)

and D̃(ξ) is the variance of q̃(ξ, v)

D̃(ξ) =
∫
V (ξ)

(v − c̃)2q̃(ξ, v)dv. (32)

The set V (ξ) denotes the set of all possible velocities. To
write down V (ξ) explicitly, it helps to translate Eq. 4 into
(ξ , ϑ)-coordinates to give

q̃(ξ, v) = ετ k̃ετ (ξ + τεv|ξ), (33)

with

k̃ετ (ζ |ξ) = kτ (z|x)

ε
, z = ζ

ε
, x = ξ

ε
. (34)

In our model, the velocities are limited so that the animal
cannot move outside the interval [0, ε] in a single timestep
of length ετ , in the rescaled units. Since ξ ∈ [0, ε], we
thus have V (ξ) = [−ξ/(ετ), (ε − ξ)/(ετ)]. The choice of
q̃(ξ, v) in Eq. 33 then leads to

c̃(ξ) =
∫
V

vq̃(ξ, v)dv

=
∫ ε

0

ζ − ξ

ετ
[ετ k̃ετ (ζ |ξ)]dζ

ετ

= 1

ετ

∫ ε

0
(ζ − ξ)k̃ετ (ζ |ξ)dζ

= 1

ετ

∫ 1

0
(εz − εx)

kτ (z|x)

ε
εdz

= c(x), (35)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where c(x) is the expectation of the velocity in the original
(x, t) co-ordinates. Similarly, we obtain for D̃(ξ)

D̃(ξ) =
∫
V

(v − c̃)2q̃(ξ, v)dv

=
∫ ε

0

(ζ − ξ − τεc̃)2

ε2τ 2
[ετ k̃ετ (ζ |ξ)]dζ

ετ

= 1

ε2τ 2

∫ ε

0
(ζ − ξ)2k̃ετ (ζ |ξ)dζ

− 2

ετ

∫ ε

0
(ζ − ξ)c̃(ξ)k̃ετ (ζ |ξ)dζ + c̃(ξ)2

= 1

ε2τ 2

∫ ε

0
(ζ − ξ)2k̃ετ (ζ |ξ)dζ − c̃(ξ)2

= 1

ε2τ 2

∫ 1

0
(εz − εx)2 kτ (z|x)

ε
εdz − c(x)2

= D(x), (36)

where D(x) is the variance of the velocity in the original
co-ordinates. Notice that c(x) and D(x) vary with space,
but not time. Using the quantities c(x) and D(x), we can
transform Eq. 30 back into the original co-ordinates. The
result is given in Eq. 9.

Appendix B

We have seen that the coefficients c(x) and D(x) can be
non-differentiable at 0.5, and c(x) can even have a jump.
Assuming D(x) is continuous, as in the examples of Fig. 3,
the steady-state solutions are also continuous at 0.5, but
in some cases they can be non-differentiable. To deal with
this property, we use the following definition of a weak
solution.

Definition 1 Let W 1,2([0, 1]) denote the Sobolev space of
functions on [0, 1] that live in L2-space and whose weak
derivatives are also in L2. We call u∗ ∈ W 1,2([0, 1]) a weak
solution of Eq. 13, with zero-flux boundary conditions (12),
if for all test functions

φ ∈ {C2([0, 1]); φ(0.5) = 0, φ′(0) = φ′(0.5) = φ′(1) = 0}
we have

− τ

2

∫ 1

0

∂

∂x
(Du∗)

∂φ

∂x
dx +

∫ 1

0
cu∗

∂φ

∂x
dx

+τ

4

∫ 1

0
c2 ∂

∂x

(
u∗

∂φ

∂x

)
dx = 0.

Lemma 1 The explicit solution given in Eq. 14 is a weak
solution of Eq. 13 as long as D(x) is continuous.

Proof The lemma can be shown by direct substitution of
Eq. 14 into the definition of a weak solution.

It should be noted that the choice of test function
φ with φ(0.5) = φ′(0.5) = 0 allows for an excep-
tional point at 0.5 and it would be expected that the
solution is not unique at that point. However, by stip-
ulating that u∗ ∈ W 1,2, we guarantee that u∗ is con-
tinuous at 0.5. Since we have the explicit solution (14),
we know that such a solution exists, as long as D(x) is
continuous.

For the cases represented in Fig. 3, we can go further
and show that the only possible solutions are continuous,
regardless of the constraints put on u∗. We do this in two
separate cases in the following.

Case 1 α = 1/β. In this case, c(x) and D(x) can
be defined as the following smooth (C∞) functions on
[0, 1]

c(x) = σ
√

2

τ
√

πg(x)

[
(β − 1) exp

(−(1 − 2x)2

8σ 2

)

+ exp

(−x2

2σ 2

)
− β exp

(−(1 − x)2

2σ 2

)]

×
[
(1 − β)erf

(
1 − 2x

2
√

2σ

)

+erf

(
x√
2σ

)
+ βerf

(
1 − x√

2σ

)]−1

, (37)

D(x) = σ
√

2

τ 2
√

πg(x)

[
−x exp

(−x2

2σ 2

)

−(1 − β)
1 − 2x

2
exp

(−(1 − 2x)2

8σ 2

)

+σ(1 − β)

√
π

2
erf

(
1 − 2x

2
√

2σ

)
+ σ

√
π

2
erf

(
x√
2σ

)

−β(1 − x) exp

(−(1 − x)2

2σ 2

)

+σβ

√
π

2
erf

(
1 − x√

2σ

)]
×

[
(1 − β)erf

(
1 − 2x

2
√

2σ

)

+erf

(
x√
2σ

)
+ βerf

(
1 − x√

2σ

)]−1

− c(x)2. (38)

Therefore, Eq. 9 can be defined on the whole interval [0, 1],
so the steady-state solution from Eq. 14 is a classical solu-
tion valid on [0, 1]. This is plotted for α = 0.5, β = 2 in
Fig. 3c of the main text.
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Case 2 α = β. Here, we use a symmetry argument. Specif-
ically, we observe that in this case the movement kernel
kτ (z|x) is invariant under change of co-ordinates x ↔ 1−x,
z ↔ 1 − z. It follows that u∗(x) = u∗(1 − x), i.e.,
u∗(1/2 + δ) = u∗(1/2 − δ) for all δ ∈ (0, 1/2]. The only
way this can be true is if the solution in Eq. 14 is continu-
ous at x = 0.5. The solution is plotted in Fig. 2a, b, d of the
main text, for various parameter values where α = β.
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Potts JR, Auger-Méthé M, Mokross K, Lewis MA (2014b) A general-
ized residual technique for analysing complex movement models
using earth mover’s distance. Methods Ecol Evol 5(10):1012–
1022

Reeve JD, Cronin JT (2010) Edge behaviour in a minute parasitic
wasp. J Anim Ecol 79(2):483–490

Reeve JD, Cronin JT, Haynes KJ (2008) Diffusion models for animals
in complex landscapes: incorporating heterogeneity among sub-
strates, individuals and edge behaviours. J Anim Ecol 77(5):898–
904

Rhodes J, McAlpine C, Lunney D, Possingham H (2005) A spa-
tially explicit habitat selection model incorporating home range
behavior. Ecology 86:1199–1205

Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses
to habitat edges: mechanisms, models, and variability explained.
Annu Rev Ecol Evol Syst 35:491–522

Salomon A, Waller N, McIlhagga C, Yung R, Walters C (2002) Mod-
eling the trophic effects of marine protected area zoning policies:
a case study. Aquat Ecol 36(1):85–95

Schultz CB, Franco AMA, Crone EE (2012) Response of butterflies
to structural and resource boundaries. J Anim Ecol 81(3):724–
734

Thurfjell H, Ciuti S, Boyce M (2014) Applications of step-selection
functions in ecology and conservation. Mov Ecol 2(1):4

Tjrve E (2010) How to resolve the {SLOSS} debate: lessons from
species-diversity models. J Theor Biol 264(2):604–612

Turchin P (1991) Translating foraging movements in heterogeneous
environments into the spatial distribution of foragers. Ecology
72(4):1253–1266

Turchin P (1998) Quantitative analysis of movement: measuring and
modeling population redistribution in animals and plants, vol 1.
Sinauer Associates Sunderland, Massachusetts



Theor Ecol

Tyson R, Thistlewood H, Judd GJR (2007) Modelling dispersal of
sterile male codling moths, cydia pomonella, across orchard
boundaries. Ecol Model 205(1-2):1–12

Xiao M, Reeve JD, Xu D (2013) Estimation of the diffusion rate
and crossing probability for biased edge movement between two
different types of habitat. J Math Biol 67(3):535–67

Zheng C, Pennanen J, Ovaskainen O (2009) Modelling dispersal
with diffusion and habitat selection: analytical results for highly
fragmented landscapes. Ecol Model 220(12):1495–1505

Zheng D, Chen J (2000) Edge effects in fragmented landscapes: a
generic model for delineating area of edge influences (d-aei). Ecol
Model 132(3):175–190


	The ``edge effect'' phenomenon: deriving population abundance patterns from individual animal movement decisions
	Abstract
	Introduction
	Modelling movement near edges
	The general movement kernel framework
	A model of movement near edges

	A partial differential equation approximation
	Technical note

	Comparison with other approaches
	The moment closure approach
	Patlak's approach
	Three-way comparison

	Discussion and conclusions
	Acknowledgments
	Open Access
	Appendix  A
	Appendix B
	Appendix  B
	References




