1,118 research outputs found

    Identifying vacancy complexes in compound semiconductors with positron annihilation spectroscopy: a case study of InN

    Get PDF
    We present a comprehensive study of vacancy and vacancy-impurity complexes in InN combining positron annihilation spectroscopy and ab-initio calculations. Positron densities and annihilation characteristics of common vacancy-type defects are calculated using density functional theory and the feasibility of their experimental detection and distinction with positron annihilation methods is discussed. The computational results are compared to positron lifetime and conventional as well as coincidence Doppler broadening measurements of several representative InN samples. The particular dominant vacancy-type positron traps are identified and their characteristic positron lifetimes, Doppler ratio curves and lineshape parameters determined. We find that In vacancies and their complexes with N vacancies or impurities act as efficient positron traps, inducing distinct changes in the annihilation parameters compared to the InN lattice. Neutral or positively charged N vacancies and pure N vacancy complexes on the other hand do not trap positrons. The predominantly introduced positron trap in irradiated InN is identified as the isolated In vacancy, while in as-grown InN layers In vacancies do not occur isolated but complexed with one or more N vacancies. The number of N vacancies per In vacancy in these complexes is found to increase from the near surface region towards the layer-substrate interface.Comment: 10 pages, 6 figure

    Evidence of a second acceptor state of the E center in Si1-x Gex

    Get PDF
    We have found evidence of a second acceptor state of the E center in Si1-x Gex by using positron annihilation spectroscopy. To achieve this, we studied proton irradiated n-type Si1−x Gex with a Ge content of 10%–30% and a P dopant concentration of 10 exp 18cm exp −3, in which the number of Ge atoms around irradiation induced E centers was increased by annealing. When measuring the Doppler broadening of the annihilation line, the shape parameter S starts to decrease at 150 K with decreasing measurement temperature. This indicates that a charge transition in the upper half of the Si1−x Gex band gap, above the well known (0/−) level, takes place. Hence, we suggest that the increased concentration of germanium around the E center pulls down the localized second acceptor state into the Si1−x Gex band gap, making the Ge decorated E center a more effective trap for conduction electrons.Peer reviewe

    Matter-positronium interaction: An exact diagonalization study of the He atom - positronium system

    Full text link
    The many-body system comprising a He nucleus, three electrons, and a positron has been studied using the exact diagonalization technique. The purpose has been to clarify to which extent the system can be considered as a distinguishable positronium (Ps) atom interacting with a He atom and, thereby, to pave the way to a practical atomistic modeling of Ps states and annihilation in matter. The maximum value of the distance between the positron and the nucleus is constrained and the Ps atom at different distances from the nucleus is identified from the electron and positron densities, as well as from the electron-positron distance and center-of-mass distributions. The polarization of the Ps atom increases as its distance from the nucleus decreases. A depletion of the He electron density, particularly large at low density values, has been observed. The ortho-Ps pick-off annihilation rate calculated as the overlap of the positron and the free He electron densities has to be corrected for the observed depletion, specially at large pores/voids.Comment: 18 pages, 8 figure

    Native point defects in GaSb

    Get PDF
    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.Peer reviewe

    Prospective life cycle assessment of a bioprocess design for cultured meat production in hollow fiber bioreactors

    Get PDF
    The aim of cellular agriculture is to use cell-culturing technologies to produce alternatives to agricultural products. Cul-tured meat is an example of a cellular agriculture product, made by using tissue engineering methods. This study aims to improve the understanding of the potential environmental impacts of cultured meat production by comparing be-tween different bioprocess design scenarios. This was done by carrying out a life cycle assessment (LCA) for a bioprocess system using hollow fiber bioreactors, and utilizing bench-scale experimental data for C2C12 cell prolifer-ation, differentiation and media metabolism. Scenario and sensitivity analyses were used to test the impact of changes in the system design, data sources, and LCA methods on the results to support process design decision making. We com-pared alternative scenarios to a baseline of C2C12 cells cultured in hollow fiber bioreactors using media consisting of DMEM with serum, for a 16-day proliferation stage and 7-day differentiation stage. The baseline LCA used the average UK electricity mix as the energy source, and heat treatment for wastewater sterilization. The greatest reduction in en-vironmental impacts were achieved with the scenarios using CHO cell metabolism instead of C2C12 cell metabolisim (64-67 % reduction); achieving 128 % cell biomass increase during differentiation instead of no increase (42-56 % reduction); using wind electricity instead of average UK electricity (6-39 % reduction); and adjusting the amino acid use based on experimental data (16-27 % reduction). The use of chemical wastewater treatment instead of heat treatment increased all environmental impacts, except energy demand, by 1-16 %. This study provides valuable insights for the cultured meat field to understand the effects of different process design scenarios on environmental impacts, and therefore provides a framework for deciding where to focus development efforts for improving the envi-ronmental performance of the production system.Peer reviewe

    Spin dependent electron transport through a magnetic resonant tunneling diode

    Get PDF
    Electron transport properties in nanostructures can be modeled, for example, by using the semiclassical Wigner formalism or the quantum mechanical Green's functions formalism. We compare the performance and the results of these methods in the case of magnetic resonant-tunneling diodes. We have implemented the two methods within the self-consistent spin-density-functional theory. Our numerical implementation of the Wigner formalism is based on the finite-difference scheme whereas for the Green's function formalism the finite-element method is used. As a specific application, we consider the device studied by Slobodskyy et all. [Phys. Rev. Lett. 90, 246601 (2003)] and analyze their experimental results. The Wigner and Green's functions formalisms give similar electron densities and potentials but, surprisingly, the former method requires much more computer resources in order to obtain numerically accurate results for currents. Both of the formalisms can successfully be used to model magnetic resonant tunneling diode structures.Comment: 13 pages and 12 figure

    Environmental impacts of cultured meat: alternative production scenarios

    Get PDF
    Cultured meat is produced by culturing animal muscle tissue in a laboratory without growing the whole animals. Its development is currently in a research stage. An earlier study showed that cultured meat production could potentially have substantially lower greenhouse gas emissions, land use and water use compared to conventionally produced meat. The aim of this paper is to amend the previous study by considering alternative production scenarios. The impacts of replacing cyanobacteria based nutrient media with plant based media are assessed. This paper includes more specific modelling of a bioreactor suitable for cultured meat production. Further, this study estimates the water footprint of cultured meat based on a method that is compliant with life cycle assessment. The environmental impacts of cultured meat are compared with conventionally produced meat and with plant based protein sources. It is concluded that regardless of the high uncertainty ranges cultured meat has potential to substantially reduce greenhouse gas emissions and land use when compared to conventionally produced meat.JRC.H.4-Monitoring Agricultural Resource
    • …
    corecore