60 research outputs found

    C:N ratio drives soil actinobacterial cellobiohydrolase gene diversity

    Get PDF
    Cellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers. For comparison, the diversity and abundance of general bacteria and fungi were also assessed. Phylogenetic analysis of the nucleotide sequences of 80 clones revealed significant new diversity of actinobacterial GH48 genes, and analysis of translated protein sequences showed that these enzymes are likely to represent functional cellobiohydrolases. The soil C/N ratio was the primary environmental driver of GH48 community compositions across sites and land uses, demonstrating the importance of substrate quality in their ecology. Furthermore, mid-infrared (MIR) spectrometry-predicted humic organic carbon was distinctly more important to GH48 diversity than to total bacterial and fungal diversity. This suggests a link between the actinobacterial GH48 community and soil organic carbon dynamics and highlights the potential importance of actinobacteria in the terrestrial carbon cycle

    Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates

    Get PDF
    The synergistic interaction between various hemi/cellulolytic enzymes has become more important in order to achieve effective and optimal degradation of complex lignocellulose substrates for biofuel production. This study investigated the synergistic effect of three enzymes endoglucanase (EngE), mannanase (ManA) and xylanase (XynA) on the degradation of corn stalk, grass, and pineapple fruit pulp and determined the optimal degree of synergy between combinations of these enzymes. It was established that EngE was essential for degradation of all of the substrates, while the hemicellulases were able to contribute in a synergistic fashion to increase the activity on these substrates. Maximum specific activity and degree of synergy on the corn stalk and grass was found with EngE:XynA in a ratio of 75:25%, with a specific activity of 41.1 U/mg protein and a degree of synergy of 6.3 for corn stalk, and 44.1 U/mg protein and 3.4 for grass, respectively. The pineapple fruit pulp was optimally digested using a ManA:EngE combination in a 50:50% ratio; the specific activity and degree of synergy achieved were 52.4 U/mg protein and 2.7, respectively. This study highlights the importance of hemicellulases for the synergistic degradation of complex lignocellulose. The inclusion of a mannanase in an enzyme consortium for biomass degradation should be examined further as this study suggests that it may play an important, although mostly overlooked, role in the synergistic saccharification of lignocellulose

    Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbya gossypii

    Get PDF
    To explore the potential of Ashbya gossypii as a host for the expression of recombinant proteins and to assess whether protein secretion would be more similar to the closely related Saccharomyces cerevisiae or to other filamentous fungi, endoglucanase I (EGI) and cellobiohydrolase I (CBHI) from the fungus Trichoderma reesei were successfully expressed in A. gossypii from plasmids containing the two micron sequences from S. cerevisiae, under the S. cerevisiae PGK1 promoter. The native signal sequences of EGI and CBHI were able to direct the secretion of EGI and CBHI into the culture medium in A. gossypii. Although CBHI activity was not detected using 4- methylumbelliferyl-ÎČ-D-lactoside as substrate, the protein was detected by Western blot using monoclonal antibodies. EGI activity was detectable, the specific activity being comparable to that produced by a similar EGI producing S. cerevisiae construct. More EGI was secreted than CBHI, or more active protein was produced. Partial characterization of CBHI and EGI expressed in A. gossypii revealed overglycosylation when compared with the native T. reesei proteins, but the glycosylation was less extensive than on cellulases expressed in S. cerevisiae.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Enzyme production from food wastes using a biorefinery concept

    Get PDF
    According to Food and Agricultural Organization (FAO), one-third of food produced globally for human consumption (nearly 1.3 billion tonnes) is lost along the food supply chain. In many countries food waste is currently landfilled or incinerated together with other combustible municipal wastes for possible recovery of energy. However, these two options are facing more and more economic and environmental stresses. Due to its organic- and nutrient-rich nature, theoretically food waste can be converted to valuable products (e.g. bio-products such as methane, hydrogen, ethanol, enzymes, organic acids, chemicals and fuels) through various fermentation processes. Such conversion of food waste is potentially more profitable than its conversion to animal feed or transportation fuel. Food waste valorisation has therefore gained interest, with value added bio-products such as methane, hydrogen, ethanol, enzymes, organic acids, chemicals, and fuels. Therefore, the aim of this review is to provide information on the food waste situation with emphasis on Asia–Pacific countries and the state of the art food waste processing technologies to produce enzymes

    Initial wet web strength of paper

    Full text link

    Interaction studies of the tail domain of cellobiohydrolase I and crystalline cellulose using molecular modelling

    No full text
    A surface model of crystalline cellulose was constructed based on the crystal structure of the sea alga Valonia ventricosa (Gardner and Blackwell, 1974). The structure of the crystalline cellulose was optimized by minimizing the intra- and intermolecular energies. Interactions between the optimized crystalline cellulose and the tail domain of CBH I were explored using molecular dynamics calculations carried out in vacuum. The binding of the tail domain to a relatively large portion of a linear polysaccharide has shown to involve numerous individually weak interactions (van der Waals and H-bonds). This preliminary research is related to the use of molecular modelling in a study to explain the weak interactions involved in the enzyme-cellulose substrate complex
    • 

    corecore