26 research outputs found

    Penalty-free feasibility boundary convergent multi-objective evolutionary algorithm for the optimization of water distribution systems

    Get PDF
    This paper presents a new penalty-free multi-objective evolutionary approach (PFMOEA) for the optimization of water distribution systems (WDSs). The proposed approach utilizes pressure dependent analysis (PDA) to develop a multi-objective evolutionary search. PDA is able to simulate both normal and pressure deficient networks and provides the means to accurately and rapidly identify the feasible region of the solution space, effectively locating global or near global optimal solutions along its active constraint boundary. The significant advantage of this method over previous methods is that it eliminates the need for ad-hoc penalty functions, additional “boundary search” parameters, or special constraint handling procedures. Conceptually, the approach is downright straightforward and probably the simplest hitherto. The PFMOEA has been applied to several WDS benchmarks and its performance examined. It is demonstrated that the approach is highly robust and efficient in locating optimal solutions. Superior results in terms of the initial network construction cost and number of hydraulic simulations required were obtained. The improvements are demonstrated through comparisons with previously published solutions from the literature

    Pressure-dependent EPANET extension

    Get PDF
    In water distribution systems (WDSs), the available flow at a demand node is dependent on the pressure at that node. When a network is lacking in pressure, not all consumer demands will be met in full. In this context, the assumption that all demands are fully satisfied regardless of the pressure in the system becomes unreasonable and represents the main limitation of the conventional demand driven analysis (DDA) approach to WDS modelling. A realistic depiction of the network performance can only be attained by considering demands to be pressure dependent. This paper presents an extension of the renowned DDA based hydraulic simulator EPANET 2 to incorporate pressure-dependent demands. This extension is termed “EPANET-PDX” (pressure-dependent extension) herein. The utilization of a continuous nodal pressure-flow function coupled with a line search and backtracking procedure greatly enhance the algorithm’s convergence rate and robustness. Simulations of real life networks consisting of multiple sources, pipes, valves and pumps were successfully executed and results are presented herein. Excellent modelling performance was achieved for analysing both normal and pressure deficient conditions of the WDSs. Detailed computational efficiency results of EPANET-PDX with reference to EPANET 2 are included as well

    Informational entropy : a failure tolerance and reliability surrogate for water distribution networks

    Get PDF
    Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies

    Reliability and tolerance comparison in water supply networks

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11269-010-9753-2Urban water supply is a high priority service and so looped networks are extensively used in order to considerably reduce the number of consumers affected by a failure. Looped networks may be redundant in connectivity and capacity. The concept of reliability has been introduced in an attempt to quantitatively measure the possibility of maintaining an adequate service for a given period. Numerous researchers have considered reliability as a measure of redundancy. This concept is usually implicit, but some researchers have even stated it explicitly. This paper shows why reliability cannot be considered a measure of redundancy given that branched networks can achieve high values of reliability and this would deny the fact that a looped network is more reliable than a branched network with a similar layout and size. To this end the paper discusses two quantitative indices for measuring expected network behavior: reliability and tolerance. These indices are calculated and a comparison is made between looped, branched, and mixed networks. © 2011 Springer Science+Business Media B.V.The authors wish to acknowledge the support received from project IDAWAS, DPI2009-11591, of the Directorate-General of Research at the Spanish Ministry of Education, the grant PAID-02-09 for a stay at the Universidad Politecnica de Valencia by the first author, and a grant MAEC-AECI 0000202066 awarded to the second author by the Ministerio de Asuntos Exteriores y Cooperacion of Spain. The use of English in this paper was revised by John Rawlins; and the revision was funded by the Universidad Politecnica de Valencia, Spain.Martínez-Rodríguez, JB.; Montalvo Arango, I.; Izquierdo Sebastián, J.; Pérez García, R. (2011). Reliability and tolerance comparison in water supply networks. Water Resources Management. 25(5):1437-1448. https://doi.org/10.1007/s11269-010-9753-2S14371448255Bao Y, Mays LW (1990) Model for water distribution system reliability. J Hydraul Eng ASCE 116(9):1119–1137Bouchart F, Goulter I (1991) Reliability improvements in design of water distribution networks recognizing valve location. Water Resour Res 27(12):3029–3040Carrión A, Solano H, Gamiz ML, Debón A (2010) Evaluation of the reliability of a water supply network from right-censored and left-truncated break data. Water Resour Manag, Springer Sci 24:2917–2935. Published online: 28 January 2010Chiong C (1985) Optimización de redes cerradas, Doctoral Thesis, CIH-CUJAE, Havana (in Spanish)Christodoulou SE (2010) Water network assessment and reliability analysis by use of survival analysis. Water Resour Manag, Springer Sci, Published online: 19 June 2010Cullinane MJ, Lansey KE, Mays LW (1992) Optimization-availability-based design of water distribution networks. J Hydraul Eng ASCE 118(3):420–441Duan N, Mays LW, Lansey KE (1990) Optimal reliability-based design of pumping and distribution systems. J Hydraul Eng ASCE 116(2):249–268Goulter I (1992) Systems analysis in water distribution network design: from theory to practice. J Water Resour Plan Manage ASCE 118(3):238–248Goulter I (1993) Modern concepts of a water distribution system. Policies for improvement of networks with shortcomings. In: Cabrera E, Martínez F (eds) Water supply systems: state of the art and future trends, Valencia (Spain). Comput Mech Publ, Southampton, pp 121–138Goulter I, Bouchart F (1990) Reliability-constrained pipe network model. J Hydraul Eng ASCE 116(2):211–229Gupta R, Bhave R (1994) Reliability analysis of water distribution systems. J Environ Eng ASCE 120(2):447–460Jacobs P, Goulter I (1991) Estimation of maximum cut-set size for water network failure. J Water Resour Plan Manage ASCE 117(5):588–605Jowitt P, Xu C (1993) Predicting pipe failure effects in water distribution networks. J Water Resour Plan Manage ASCE 119(l):18–31Kalungi P, Tanyimboh TT (2003) Redundancy model for water distribution systems. Rel Eng Syst Safety 82(3):275–286Khomsi D, Walters GA, Thorley ARD, Ouazar D (1996) Reliability tester for water-distribution networks. J Comput Civ Eng ASCE 10(l):10–9Lansey K, Duan N, Mays LW, Tung YK (1989) Water distribution system design under uncertainty. J Water Resour Plan Manage ASCE 115(5):630–645Loganathan GV, Shah MP, Sherali HP (1990) A two-phase network design heuristic for minimum cost water distribution systems under a reliability constraint. Eng Optim 15(4):311–336Martínez JB (2007) Quantifying the economy of water supply looped networks. J Hydraul Eng ASCE 133(1):88–97Martínez JB (2010) Cost and reliability comparison between branched and looped water supply networks. J Hydroinform IWA 12(2):150–160Morgan DR, Goulter IC (1985) Optimal urban water distribution design. Water Resour Res 21(5):642–652Park H, Leibman J (1993) Redundancy-constrained minimum-cost design of water distribution networks. J Water Resour Plan Manage ASCE 119(l):83–98Pinto J, Varum H, Bentes I, Agarwal J (2010) A theory of vulnerability of water pipe network. Water Resour Manag 24:4237–4254. Springer Science, Published online: 6 May 2010Quimpo R, Shamsi U (1991) Reliability-based distribution system maintenance. J Water Resour Plan Manage ASCE 117(3):321–339Su Y, Mays LW, Duan N, Lansey K (1987) Reliability based optimization model for water distribution systems. J Hydraul Eng ASCE 113(12):1539–1556Tanyimboh TT, Tabesh M, Burrows R (2001) Appraisal of source head methods for calculating reliability of water distribution networks. J Water Resour Plan Manage ASCE 127(4):206–213Walski TM, Weiler JS, Culver T (2006) Using criticality analysis to identify impact of valve location. In: Proc 8th annual water distrib systems analysis symposium, August 27–30, Cincinnati, Ohio, USA,Walters GA, Knezevic J (1989) Discussion of ‘Reliability based optimization model for water distribution systems’ by Su, Y., Mays, L. W. , Duan, N., and Lansey, K. J Hydraul Eng ASCE 115(8):1157–1158Xu C, Goulter I (1997) Simulation-based optimal design of reliable water distribution networks. In: Zayegh A (ed) Proc 3rd int conf on modeling and simulation. Victoria University of Technology, Melbourne, pp 107–112Xu C, Goulter I (1998) Probabilistic model for water distribution reliability. J Water Resour Plan Manage ASCE 124(4):218–228Xu C, Goulter I (1999) Reliability based optimal design of water distribution networks. J Water Resour Plan Manage ASCE 125(6):352–362Xu C, Goulter I (2000) A model for optimal design of reliable water distribution networks. In: Blain WR, Brebbia CA (eds) Hydraulic engineering software VIII. WIT, Southampton, pp 71–8

    Assessment of penalty-free multi-objective evolutionary optimization approach for the design and rehabilitation of water distribution systems

    Get PDF
    This paper describes a penalty-free multi-objective evolutionary optimization approach for the phased whole-life design and rehabilitation of water distribution systems. The optimization model considers the initial construction, rehabilitation and upgrading costs. Repairs and pipe failure costs are included. The model also takes into consideration the deterioration over time of both the structural integrity and hydraulic capacity of every pipe. The fitness of each solution is determined from the trade-off between its lifetime costs and its actual hydraulic properties. The hydraulic analysis approach used, known as pressure-dependent modelling, considers explicitly the pressure dependency of the water supply consumers receive. Results for two sample networks in the literature are included that show the algorithm is stable and finds optimal and near-optimal solutions reliably and efficiently. The results also suggest that the evolutionary sampling efficiency is very high. In other words, the number of solutions evolved and analysed on average before finding a near-optimal solution is small in comparison to the total number of feasible and infeasible solutions. We found better solutions than those reported previously in the literature for the two networks considered. For the Kadu network, for example, the new best solution costs Rs125,460,980 – a significant improvement. Additional statistics that are based on extensive testing are included

    Multiobjective memetic algorithm applied to the optimisation of water distribution systems

    Get PDF
    Finding low-cost designs of water distribution systems (WDSs) which satisfy appropriate levels of network performance within a manageable time is a complex problem of increasing importance. A novel multi-objective memetic algorithm (MA) is introduced as a solution method to this type of problem. The MA hybridises a robust genetic algorithm (GA) with a local improvement operator consisting of the classic Hooke and Jeeves direct search method and a cultural learning component. The performance of the MA and the GA on which it is based are compared in the solution of two benchmark WDS problems of inreacing size and difficulty. Solutions that are superior to those reported previously in the literature were achieved. The MA is shown to outperform the GA in each case, indicating that this may be a useful tool in the solution of real-world WDS problems. The potential benefits from search space reduction are also demonstrated
    corecore