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Abstract Evolutionary algorithms are used widely in optimization studies on water
distribution networks. The optimization algorithms use simulation models that analyse
the networks under various operating conditions. The solution process typically
involves cost minimization along with reliability constraints that ensure reasonably
satisfactory performance under abnormal operating conditions also. Flow entropy has
been employed previously as a surrogate reliability measure. While a body of work
exists for a single operating condition under steady state conditions, the effectiveness
of flow entropy for systems with multiple operating conditions has received very little
attention. This paper describes a multi-objective genetic algorithm that maximizes the
flow entropy under multiple operating conditions for any given network. The new
methodology proposed is consistent with the maximum entropy formalism that re-
quires active consideration of all the relevant information. Furthermore, an alternative
but equivalent flow entropy model that emphasizes the relative uniformity of the
nodal demands is described. The flow entropy of water distribution networks under
multiple operating conditions is discussed with reference to the joint entropy of
multiple probability spaces, which provides the theoretical foundation for the optimi-
zation methodology proposed. Besides the rationale, results are included that show
that the most robust or failure-tolerant solutions are achieved by maximizing the sum
of the entropies.
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1 Introduction

Water distribution systems are part of the critical economic networks on which modern-day
societies depend, and it is widely accepted that there is considerable uncertainty associated
with their planning, design and operation. The uncertainty arises from many factors, for
example, the deterioration in the structural integrity and hydraulic capacity, unpredictable
demands for fire-fighting and random fluctuations in the demands in addition to the underlying
temporal and spatial variations, to name but a few. Hence, it is widely accepted that, ideally,
explicit criteria for hydraulic capacity reliability and failure tolerance should be included in the
design specifications for water distribution systems.

However, it is often difficult to set such performance criteria. Moreover, quantified
reliability measures for water distribution systems are particularly difficult to define and
evaluate (Wagner et al. 1988). It is even more challenging to incorporate reliability in the
procedures used to optimize the design of water distribution systems. Consequently, some
surrogate reliability measures such as flow entropy and resilience index have been adopted as
they are computationally less demanding (Templeman 1982; Yates et al. 1984).

Flow entropy has been suggested as a surrogate measure of reliability and failure tolerance
for water distribution systems. Flow entropy has the advantages that it is relatively easy to
calculate and the data it requires are minimal. Also, it lends itself to direct incorporation into
formal optimization procedures. Flow entropy is an extension of Shannon’s statistical entropy
that is a measure of the amount of uncertainty that a probability distribution represents
(Shannon 1948).

In the context of water distribution systems, uncertainty may arise due to a variety of
reasons including incomplete or imprecise data, future demand requirements and the network’s
structural integrity and hydraulic capacity that cannot be described or predicted with sufficient
accuracy due to incomplete knowledge or understanding of the relevant factors or processes.
Furthermore, the uncertainty due to randomness is unavoidable. Examples include the pipe and
other component failures that may be related to extraneous factors also, and random fluctua-
tions in demand.

Many different approaches have been developed including stochastic and reliability-based
methods that address aleatoric uncertainty due to randomness (Gupta and Bhave 1996; Xu and
Goulter 1999a; Laguna et al. 2000; Tolson et al. 2004; Afshar et al. 2005; Kapelan et al. 2005;
Giustolisi et al. 2009; Saleh and Tanyimboh 2013) and fuzzy sets for epistemic uncertainty due
to incomplete or imprecise information (Xu and Goulter 1999b; Revelli and Ridolfi 2002;
Bhave and Gupta 2004; Vamvakeridou-Lyroudia et al. 2005; Gupta and Bhave 2007;
Branisavljević et al. 2009; Fu and Kapelan 2011; Shibu and Reddy 2011; Spiliotis and Tsakiris
2012; Sivakumar et al. 2015).

Also, scenario-based robust optimization approaches that address the uncertainty associated
with the various scenarios seek solutions that provide the best compromise with respect to the
scenarios considered (Watkins and McKinney 1997; Afonso and Cunha 2007; Cunha and
Sousa 2010; Napolitano et al. 2016).

Other surrogate measures in the literature include: Tsallis entropy (Singh and Oh 2015),
diameter-sensitive flow entropy (Liu et al. 2016), resilience indices (Todini 2000; Prasad and
Park 2004; Jayaram and Srinivasan 2008; Liu et al. 2016) and surplus power factor (Vaabel
et al. 2006). The results to date seem to indicate that flow entropy (Tanyimboh and Templeman
1993a) yields the most consistent results (Gheisi and Naser 2015; Tanyimboh et al. 2016; Liu
et al. 2016). Recent reviews and comparisons include Liu et al. (2014, 2016), Tanyimboh et al.
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(2016), Gheisi and Naser (2015), Atkinson et al. (2014) and Greco et al. (2012). In particular,
Gheisi and Naser (2015) emphasized the importance of failure tolerance while Tanyimboh
et al. (2016) highlighted the need for more consistency in future comparisons.

Flow entropy was tested on different networks over the years and the function
proposed in Tanyimboh and Templeman (1993a) was consistently satisfactory. Never-
theless, most of the work focused on networks with a single operating condition based
on steady-state simulation that assumes that nodal demands are constant. It is common
practice to use the maximum daily demand and steady-state modelling in designing
water distribution networks.

In reality, however, the demands vary with the time of the day and other loading conditions
including fire flows that have to be satisfied by the network (Cunha and Sousa 2010; Simpson
et al. 1994; Walski et al. 1987; Tanyimboh and Seyoum 2016). Alperovits and Shamir (1977)
suggested that, in addition to the maximum daily demand and fire flows, the minimum demand
periods should be considered also. Furthermore, Prasad (2010) has shown that even if a network
satisfies the peak demands it does not follow that other operating conditions will be satisfied as a
result. Prasad (2010) also demonstrated that designs that consider multiple operating conditions
are more reliable than those based on a single operating condition. Similarly, maximum entropy
designs achieve higher levels of reliability and redundancy by being maximally noncommittal to
other operating conditions besides those that are designed for explicitly.

Evolutionary optimization algorithms that rely on simulation models are very popular in
many disciplines including water resources (Mora-Melia et al. 2015; Borah and Bhattacharjya
2016; Chang et al. 2016; Masoumi et al. 2016; Shokoohi et al. 2016; Steffelbauer and Fuchs-
Hanusch 2016). Simulation models make the inclusion of multiple operating conditions in
optimization models relatively straightforward. On the other hand, the flow entropy in systems
with multiple operating conditions has not been investigated hitherto.

This paper describes a multi-objective genetic algorithm that maximizes the flow entropy
for multiple operating conditions for any given network (Czajkowska 2016). The new
methodology proposed is consistent with the maximum entropy formalism (Jaynes 1957) that
requires active consideration of Bwhatever is known^. An alternative flow entropy function is
presented that considers the relative uniformity of the nodal demands, as opposed to the
relative uniformity of the source supplies, and its equivalence to the existing function is
established. Also, the flow entropy function for multiple operating conditions is discussed
with reference to the joint entropy of a combination of probability schemes to provide the
theoretical foundation for the optimization model proposed.

2 The Flow Entropy Function

Shannon (1948) developed the informational entropy function as a statistical measure of the
amount of uncertainty that a probability distribution represents. Shannon’s entropy function for
a single probability space is

S ¼ − ∑
n

i¼1
pilnpi ð1Þ

in which S is the entropy; pi is the probability of the ith outcome; and n is the number of
outcomes. Tanyimboh and Templeman (1993a, b) developed the framework that enabled the
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pipe flow rates in a water distribution network to be cast as probabilities. Given the pipe flow
rates, the entropy function is

S ¼ S0 þ ∑
nn

i¼1
PiSi ð2Þ

where S is the entropy; S0 is the entropy that accounts for the relative contributions of the
supply nodes; Si is the entropy at node i; Pi ≡ Ti/T is the fraction of the total flow through the
network that reaches node i; Ti is the total flow that reaches node i; T is the sum of the nodal
demands; nn is the number of nodes in the network. The entropy for the relative contributions
of the supply nodes is

S0 ¼ − ∑
i∈I

Q0i

T
ln

Q0i

T

� �
ð3Þ

where Q0i is the inflow at supply node i; I represents the set of supply nodes. Similarly, the
entropy at demand node i is

Si ¼ −
Qi0

Ti
ln

Qi0

Ti

� �
− ∑

ij∈NDi

Qij

T i
ln

Qij

T i

� �
; i ¼ 1; …; nn ð4Þ

where Qi0 is the demand at node i; Qij is the flow rate in pipe ij with node i and j as the
upstream and downstream nodes, respectively; the set NDi represents the pipe flows from
node i. The entropy reflects the number of paths supplying the various demand nodes and
the relative uniformity of the flows in the respective supply paths. The greater the
uniformity in the path flows and the number of supply paths, the greater the entropy
(Tanyimboh 1993; Yassin-Kassab et al. 1999). Awumah et al. (1990, 1991) proposed
several alternatives, but they did not account for the interdependencies in the various
processes involved in a satisfactory way (Tanyimboh 1993).

The entropy also depends on the flow directions in the pipes. The problem of identifying
the optimal or most suitable set of flow directions is a complex nonlinear optimization problem
(Saleh and Tanyimboh 2014, 2016). Furthermore, previous results suggest that efficient sets of
flow directions in networks generally result in high maximum entropy values (Tanyimboh and
Setiadi 2008). To clarify further, each feasible set of flow directions has a maximum entropy
value and thus a network may have many different maximum entropy values due to the
multiplicity of flow directions.

The first term S0 in Eq. (2) relates to the relative contributions of the supply nodes.
For systems with multiple sources, S0 may change continuously. For example, the
network shown in Fig. 1 has five variable head supply nodes and three demand
categories with demand patterns that change with time (Tanyimboh and Seyoum 2016).
In addition to these practical considerations, the S0 term arises because the underlying
model comprises multiple inter-related probability spaces and the flow entropy function
stems from the conditional entropy concept (Tanyimboh 1993; Khinchin 1953, 1957).

It may appear, at first glance, that there is an imbalance between the supply nodes and
the demand node in Eq. (2). However, a water distribution network combines and/or
separates the flows in the various paths in the network repeatedly at successive nodes
and junctions. A closer examination reveals that Eq. (2) involves only the flow separation
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points in the network. In fact, there is an analogous function for the flow collection points
that may be summarised briefly as follows (Tanyimboh 1993: 106–111).

S
0 ¼ S

0
0 þ ∑

nn

i¼1
P

0
iS

0
i ð5Þ

S
0
0 ¼ − ∑

i∈D

Qi0

T
ln

Qi0

T

� �
ð6Þ

S
0
i ¼ −

Q0i

T i
ln

Q0i

T i

� �
− ∑

ij∈NUi

Qij

T i
ln

Qij

T i

� �
; i ¼ 1; …; nn ð7Þ

where S′ is the entropy of the network and S
0
0 is the entropy or uncertainty that arises due to the

distribution, or relative contributions, of the nodal demands. S
0
i is the entropy at node i, based

on the inflows at node i. The inflows include any source supplies as the first term in Eq. (7)

Fig. 1 Awater distribution network with five variable head supply nodes (R1 to R5)
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shows. NUi refers to the set of pipes upstream of node i that supply node i directly. Ti is the
total flow that reaches node i and T is the sum of the demands. P

0
i≡Pi ¼ Ti=T is the fraction of

the total flow through the network that reaches node i.
As onemight expect, S′ ≡ S. In other words, the total amount of uncertainty associated with the

path flow separation and collection processes is the same. However, in general S
0
i≠Si and S

0
0≠S0:

3 Maximum Entropy Flows in Networks

Flow entropy is often used as a practical and computationally efficient surrogate measure for
reliability and redundancy. It has been shown previously that on average reliability and
redundancy increase as flow entropy increases in water distribution networks (Gheisi and
Naser 2015). However, flow entropy is a relative measure for which there is no absolute scale.

Hence, it is frequently necessary to ascertain the maximum entropy value for any network
under consideration. It its simplest form, the problem involves maximizing the entropy subject
to the continuity of flow at the nodes and junctions, given the topology of the network and
direction of flow in the pipes as follows.

Maximize
∀Qij

S ¼ S0 þ ∑
nn

i¼1
PiSi ð8Þ

Subject to:

∑
j∈Ni

Qij þ Q0i ¼ 0; ∀i∈I ð9Þ

∑
j∈Ni

Qij þ Qi0 ¼ 0; ∀i∈D ð10Þ

Qij≥0; ∀ij ð11Þ

Q0i andQi0 are supplies and demands at the supply and demand nodes, respectively. The sets I and
D represent the supply and demand nodes, respectively. The pipe flow rates Qij are the decision
variables; the setNi comprises the upstream or downstream nodes of the pipes connected to node i.

The model in Eqs. (8) to (11) is nonlinear and convex; i.e. it has a unique maximum
entropy value for any given topology and set of flow directions (Tanyimboh 1993: 128).
The computational solution of the optimization problem requires numerical nonlinear
optimization. Efficient algorithms that avoid numerical optimization have been developed
that are quick and non-iterative (Tanyimboh and Templeman 1993b; Walters et al. 1995;
Yassin-Kassab et al. 1999; Ang and Jowitt 2005a, b). More specifically, Yassin-Kassab
et al. (1999) described the fundamental property of maximum entropy flows that underpins
the α-method they developed. Whereas Yassin-Kassab et al. (1999) carried out numerical
experiments, Ang and Jowitt (2005a, b) provided a rigorous mathematical proof that they
then used to develop path entropy methods.

The α and path entropy methods relate to a single operating condition, in other words, one
set of demands under steady state conditions. They also require the flow directions in the pipes
to be specified in advance. In the case of water distribution systems, in general the flow
directions may not be available. For example, at the planning or design stages the topology
and/or pipe diameters may not be available initially.
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The global maximum entropy approach formulated recently by Saleh and Tanyimboh
(2014, 2016) shows how the topology and/or flow directions along with the pipe diameters
and flow rates may be optimized simultaneously. This is a key contribution in the development
of flow entropy as it addresses a complex issue in practical applications.

4 Flow Entropy under Multiple Operating Conditions

In practice water distribution systems do not operate under steady state conditions. There are
other loading conditions besides the daily demand variations e.g. fire-fighting flows. Every
operating condition has an entropy value and an appropriate methodology for maximizing the
entropy is required. Maximizing the entropy for every operating condition may result in too
many objectives. Optimization problems with many objectives are extremely difficult to solve;
as the proportion of solutions that are nondominated increases very rapidly and disproportion-
ately as the objectives increase in number (Yuan et al. 2016).

An important property of informational entropy is that the joint entropy of a combination of
independent probability schemes is the sum of their entropies (Tanyimboh 1993: 73–77,
Shannon 1948). Furthermore, Jaynes (1957) stated that Bin making inference on the basis of
partial information, we must use that probability distribution that has maximum entropy
subject to whatever is known^. In other words, maximizing the entropy results in the least
biased solution. Thus the formal definition of the joint entropy and the requirement to include
whatever is known suggest that the flow entropy under multiple operating conditions is the
sum of the entropies. An illustrative example in Section 5 includes results that appear to
support this hypothesis.

5 Network Design under Multiple Operating Conditions

Results in the literature (e.g. Gheisi and Naser 2015, etc.) show that flow entropy is an
effective surrogate measure of hydraulic reliability and failure tolerance. However, most of
the research to date has focussed on a single operating condition and it is common practice to
use the maximum daily demand based on steady state analysis. In reality the nodal demands
follow a diurnal pattern and other loading patterns have to be satisfied also. Alperovits and
Shamir (1977) suggested that the minimum daily demand be considered in addition to the
maximum daily demand and fire-fighting flows.

A multi-objective evolutionary algorithm that handles multiple operating conditions seam-
lessly for any given network was developed and applied to three well-known networks in the
literature. The results showed that solutions that considered multiple operating conditions
outperformed solutions based on a single operating condition (Czajkowska 2016).

5.1 Formulation of the Optimization Model

The objectives are the initial construction cost that is to be minimized and flow entropy that is
to be maximized subject to adequate flow and pressure at the demand nodes. The nodal mass
balance and energy conservation constraints were satisfied externally using the EPANET 2
hydraulic solver (Rossman 2000). Pipe diameters were selected from a set of commercially
available discrete pipe sizes. A solution is considered feasible if the residual pressures at all the
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demand nodes are greater than or equal to the required pressures for the respective operating
conditions.

The minimum node pressure constraints were transformed into an infeasibility objective
that was minimized. In this way the constrained optimization problem was converted and
solved as an unconstrained problem without introducing any constraint violation penalties as
penalty-free genetic algorithms have achieved better results than other algorithms in the
literature consistently (Saleh and Tanyimboh 2013; Siew et al. 2014, 2016).

The optimization problem may be summarized as follows.

Minimize the total cost : f 1 ¼ ∑
np

i¼1
Ci Di; Lið Þ ð12Þ

Minimize the largest node pressure deficit : f 2 ¼ Max max 0; Hdes
i −Hi

� �� �
;∀i

� 	 ð13Þ

Maximize the flow entropy : f 3 ¼ SMOC ð14Þ

where SMOC is the flow entropy based on all the operating conditions considered and is to be
established in this research; Ci (Di, Li) is the cost associated with pipe i of diameter Di and

length Li; np represents number of pipes; Hi is the available head at node i; and Hdes
i is the

required residual head at node i. The required residual head at a node is the head above which
the demand is satisfied in full. The infeasibility function f2 in Eq. (13) represents the largest
node pressure deficit.

Three alternatives were considered for the entropy SMOC as follows:

Case I. To maximize the maximum entropy, the highest entropy value achieved was chosen,
considering all the operating conditions. This option seeks feasible solutions with
high entropy values in any operating condition, without attaching any weight to the
rest of the entropy values. This option seems unduly optimistic and may be costly in
certain circumstances.

Case II. If the smallest entropy value achieved in any operating conditions is maximized,
then it would alleviate the adverse effects of the worst-case failures. This option
seems unduly pessimistic.

Case III. By contrast, maximizing the sum of the entropies would consider all entropy values
with an expectation that the resulting solutions would be the most robust or failure
tolerant in all the operating conditions considered.

5.2 Solution Methodology

5.2.1 Description of the Optimization Algorithm

The non-dominated sorting genetic algorithm NSGA II (Deb et al. 2002) has been used widely
by many researchers in various disciplines. It is an efficient evolutionary algorithm based on
Pareto-dominance and global elitism. The general purpose binary coded NSGA II algorithm
written in the C++ language was modified and coupled with the hydraulic simulation model
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EPANET 2 (Rossman 2000). A subprogram that calculates the flow entropy for any given
layout was developed, tested and incorporated in the optimization algorithm. The
multiobjective genetic algorithm thus developed can handle multiple operating conditions
for any network configuration (Czajkowska 2016).

It was observed that many infeasible solutions were present in the Pareto-optimal fronts
achieved. This was expected as the algorithm did not prioritize any of the objective functions
and, provided they were nondominated, even infeasible solutions with low cost and high
entropy survived until the end of the optimization. This could be beneficial for the decision
maker as solutions with a small shortfall in the residual pressure may be worth considering due
to budgetary or other reasons.

Furthermore, it is widely known that evolutionary algorithms that deploy both feasible
and infeasible solutions in the optimization outperform those that penalise infeasible solu-
tions unduly (Woldesenbet et al. 2009; Saleh and Tanyimboh 2013; Siew et al. 2016). At the
end of the optimization, after removing the infeasible solutions in the Pareto-optimal front, a
program developed in the Perl language was used to select and sort all the feasible solutions,
including those from all the preceding generations, based on Pareto-dominance considering
entropy and cost.

5.2.2 Reliability and Failure Tolerance Evaluation

The nondominated feasible solutions were evaluated further by calculating the hydraulic
reliability and pipe failure tolerance, using a pressure-driven analysis program (PRAAWDS)
(Tanyimboh et al. 2003; Tanyimboh and Templeman 2010). The program is robust, compu-
tationally efficient, and has been tested and used extensively (Czajkowska 2016; Czajkowska
and Tanyimboh 2013). An extension developed in the Perl language allows seamless pipe
failure simulations for the reliability calculations (Czajkowska 2016).

For a water distribution system, the reliability may be considered a probabilistic measure of
the ability to satisfy the required nodal demands at adequate pressure under normal and
abnormal operating conditions. The pipe failure tolerance is a complementary measure that
provides a probabilistic estimate of the demand that can be satisfied when one or more
components are out of service. Accordingly, the hydraulic reliability and failure tolerance
were calculated as in Tanyimboh and Templeman (2000).

5.3 Details of the Network Investigated

The network is shown in Fig. 2 and was based on Simpson et al. (1994). The peak demand and
two fire flows were considered. Each fire flow comprised the peak demand plus a fire flow at
one node, i.e. nodes 7 and 12, for fire flows 1 and 2, respectively (Table 1). Consequently, the
minimum nodal head was higher for the peak demand than the fire flows (Walski et al. 1987;
Farmani et al. 2006; Cunha and Sousa 2010). The properties of the pipes are shown in Table 2.

The original design problem (Simpson et al. 1994) was to determine the pipe
diameters to upgrade and expand an existing network. For the purposes of the present
research, all the pipe diameters were optimized. The network comprises 10 demand
nodes, 14 pipes and 2 reservoirs. A Hazen-Williams roughness coefficient (Rossman
2000) of 120 was assumed for all the pipes (Table 2). The network is partially branched;
demand node 12 has only one incident pipe. The water levels at supply nodes 1 and 5
were 365.76 m and 371.86 m, respectively.
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With 8 pipe diameter options and 14 pipes to size, the solution space comprised a
total of 814 = 4.398 × 1012 feasible and infeasible solutions. A 3-bit binary substring
was used. Thus there were 23 = 8 substrings, an exact match for the 8 diameter options
with no redundant codes. A single-point crossover operator was used to produce two
offspring from two parents. A bitwise mutation operator was used to change the bit
from 0 to 1 or vice versa. For each entropy option in Case I to III, 30 GA runs were
performed; i.e. 90 GA runs in total. The average CPU time for a single execution of the
optimization algorithm was approximately 17 min on a PC (Intel Core 2 Duo @
3.5GHz and RAM of 3GB).

Extensive testing and sensitivity analysis were carried out to determine suitable values for
the parameters used in the optimization algorithm (Czajkowska 2016). The crossover proba-
bility was 1.0. The mutation probability was 1/42 = 0.0238 based on a chromosome length of
42, i.e. a 2.38% chance that any single bit would mutate. The population size was 200. In each
optimization run 200,000 function evaluations (i.e. 1000 generations) were allowed.

Pipe diameter
(mm)

Cost per metre
($/m)

152 49.5

203 63.3

254 94.8

305 132.9

356 170.9

406 194.9

457 231.3

508 262.5

(a) Network topology (b) Pipe diameter options

Fig. 2 Pipe network topology and diameter options

Table 1 Nodal demands and required residual heads for the network investigated

Node Elevation
(m)

Peak demand Fire flow 1 Fire flow 2

Demand
(l/s)

Required head
(m)

Demand
(l/s)

Required head
(m)

Demand
(l/s)

Required head
(m)

2 320.04 12.62 28.18 12.62 14.09 12.62 14.09
3 326.14 12.62 17.61 12.62 14.09 12.62 14.09
4 332.23 0 17.61 0 14.09 0 14.09
6 298.70 18.93 35.22 18.93 14.09 18.93 14.09
7 295.66 18.93 35.22 82.03 10.57 18.93 14.09
8 292.61 18.93 35.22 18.93 14.09 18.93 14.09
9 289.56 12.62 35.22 12.62 14.09 12.62 14.09
10 289.56 18.93 35.22 18.93 14.09 18.93 14.09
11 292.61 18.93 35.22 18.93 14.09 18.93 14.09
12 289.56 12.62 35.22 12.62 14.09 50.48 10.57

The water levels at supply nodes 1 and 5 were 365.76 m and 371.86 m, respectively
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5.4 Results and Discussion

It was observed that the ranges of the entropy values achieved by the various flow entropy
options (Case I to III) were different. Also, the Pareto-optimal fronts had slightly different
shapes. With three different operating conditions having three different sets of nodal demands
and residual pressure requirements, this outcome was not entirely surprising and, indeed, the
result seems to support the hypothesis that the entropy should include all the operating
conditions, i.e. Case III.

It was observed that a large number of solutions for which the increase in cost was very high
but the improvement in entropy was insignificant were at the upper ends of the entropy ranges.
This is consistent with previous research in the literature on the trade-off between cost and
reliability. In other words, after the improvements taper off, any further improvements become
insignificant while the cost increases excessively (Vamvakeridou-Lyroudia et al. 2005,
Czajkowska 2016, etc.). Therefore, cut-off points for entropy were set at 99% of the respective
maximum entropy values. The resulting performance indicators are summarised in Table 3. The
peak demands were used to evaluate the hydraulic reliability and failure tolerance. Unlike the
fire flows that are extreme situations, the peak loading would be expected to occur frequently.

Table 2 Pipe properties for the
network investigated Pipe number Start node End node Length (m) Hazen-Williams

coefficient

1 1 2 4828 120
2 2 3 1609 120
3 3 4 1609 120
4 4 5 6437 120
5 2 6 1609 120
6 4 8 1609 120
7 6 7 1609 120
8 7 8 1609 120
9 6 9 1609 120
10 7 10 1609 120
11 8 11 1609 120
12 9 10 1609 120
13 10 11 1609 120
14 11 12 1609 120

Table 3 Coefficient of determination for the relationships indicated

Properties and criteria Total
entropy

Maximum
entropy

Minimum
entropy

(a) Coefficient of determination
Entropy vs. mean pipe diametera 0.952 0.857 0.872
Cost vs. entropy nondominated solutions 0.651 0.599 0.007
Cost vs. reliability nondominated solutions 0.825 0.660 0.832
Cost vs. failure tolerance nondominated solutions 0.898 0.814 0.832

(b) Numbers of solutions in the categories stated
Feasible solutions 1894 1364 2057
Cost vs. entropy nondominated (CEND) solutions 53 41 73
Cost vs. reliability nondominated (CRND) solutions 10 5 8
Cost vs. failure tolerance nondominated (CFTND) solutions 5 4 8

a The mean pipe diameter is a simplistic indicator; it does not consider the spatial aspects, etc.
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Previous research has shown that both the mean and uniformity of the pipe diameters
increase as the flow entropy increases. Larger and more uniform pipe diameters improve the
hydraulic reliability by providing lower pipe failure rates and larger flow re-routing capacities
(Czajkowska and Tanyimboh 2013; Tanyimboh and Setiadi 2008). The correlation between
entropy and the mean pipe diameter was high for all the entropy options (Case I to III), with
the total entropy having the highest value of 0.952.

Figure 3 shows the relationship between the hydraulic reliability and entropy for Case II that
maximized the minimum entropy, for solutions that are nondominated based on the trade-off
between cost and flow entropy (CEND), of which the solutions that are nondominated based on the
trade-offs between cost and reliability (CRND) and between cost and failure tolerance (CFTND)
have been identified also. Table 3 shows the corresponding coefficients of determination.

The minimum entropy maximization option (Case II) generated the largest number of feasible
solutions (Table 3). However, for the cost-vs-entropy nondominated solutions (CEND), the coef-
ficient of determination of 0.007 for this option (Case II) suggests there is practically no correlation.
In fact negative correlation can be seen in Fig. 3 between entropy values of about 2.8 and 3.0. A
general pattern of negative correlation can be seen also in the bottom right corner. Overall, the results
seem to show that maximization of the minimum entropy (Case II) improves the reliability
somewhat, but does not lead to the most effective solutions compared to Case I and III.

It may be noted, however, that the entropy values in Fig. 3 from around 3.0 and above seem
to belong to a separate cluster with good correlation as can be seen in the graph. Indeed, it was
observed that all the entropy maximization options had clusters of solutions located around the
highest entropy values. This could be due to the NSGA II optimization algorithm or the
optimization model itself (Eqs. 12–14). Despite using solutions up to 99% of the respective
maximum entropy values, the majority of the solutions, with entropy values of more than
about 3.0 were close to the highest entropy values. This may have influenced the reliability-
entropy relationship achieved and may be an area for further research in the future. Also,
reintroducing the nondominated feasible solutions from all the previous generations may have
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altered the distribution of solutions in the final nondominated set. Additional investigations
may be needed to verify this.

Furthermore, the observed preponderance of high entropy solutions is consistent with
previous comments by Saleh and Tanyimboh (2014, 2016) who found that the high entropy
solutions were over-represented if the entropy was maximized on its own as a separate
objective function rather than within the hydraulic performance objective function they used.
Hence, they developed a multi-directional approach to maximize the global and local maxi-
mum entropy values simultaneously. A more even distribution of the entropy values was
achieved as a result. The local maximum entropy values are associated with the various
alternative sets of feasible flow directions in the network.

Finally, Table 3 shows that maximization of the sum of the entropies achieved better results
than maximization of the maximum entropy; it can be seen that the correlations were
consistently stronger for the total entropy option (Case III). Maximization of the total entropy
therefore seems to be the most robust approach among the three options investigated and
reinforces the hypothesis put forward here, that it is essential to take the entropy values from all
the operating conditions into consideration.

6 Conclusions

A penalty-free maximum entropy based multi-objective evolutionary optimization approach
for water distribution networks under multiple operating conditions has been presented and
evaluated. The novelty of this research in the context of entropy maximization is that the
optimization works under many loading conditions for any given network. Sensitivity analysis
was carried out to assess the robustness of the algorithm and to identify efficient input data
values relating to the population size, mutation and crossover rates, and the allocation of
redundant binary codes.

Maximization of the sum of the entropies produced the best results, i.e. the most robust or
failure-tolerant solutions. The significant advantage of the total entropy option (Case III) is that
it takes into consideration all the operating conditions. Jaynes (1957) stated that the probability
distribution that has maximum entropy subject to whatever is known should be used as it is the
least biased. Only the total entropy option is consistent with the maximum entropy principle
(Jaynes 1957). Self-evidently, maximization of the maximum entropy or maximization of
minimum entropy would place unjustified weight on one operating condition at the expense of
all the others and thus would introduce bias.

Finally, it is worth noting that the majority of the solutions achieved were relatively close to
the highest entropy values. This may have influenced the reliability-entropy relationship
achieved and may be an area for further research in the future. Similarly, Saleh and
Tanyimboh (2014, 2016) observed that the high-entropy solutions were over-represented if
the entropy was maximized on its own as a separate objective. Hence the global maximum
entropy approach they developed may be worth considering in the future as it provided a more
even distribution of the entropy values.
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