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Abstract Finding low-cost designs of water distribution systems (WDSs) which satisfy
appropriate levels of network performance within a manageable time is a complex problem
of increasing importance. A novel multi-objective memetic algorithm (MA) is introduced as a
solution method to this type of problem. The MA hybridises a robust genetic algorithm (GA)
with a local improvement operator consisting of the classic Hooke and Jeeves direct search
method and a cultural learning component. The performance of the MA and the GA on which
it is based are compared in the solution of two benchmarkWDS problems of increasing size and
difficulty. Solutions that are superior to those reported previously in the literature were
achieved. The MA is shown to outperform the GA in each case, indicating that this may be
a useful tool in the solution of real-world WDS problems. The potential benefits from search
space reduction are also demonstrated.

Keywords Penalty-freememetic algorithm .Multi-objective optimisation .Water distribution
system design . Parallel computing . High performance computing . Search space reduction

1 Introduction

Water distribution systems (WDSs) are integral components to the effective design of urban
areas, and the ever-increasing urbanisation in developed and developing countries world-wide
establishes the problem of optimising WDS design as an important research area. These
systems are the networks of pipes, pumps, reservoirs, tanks and nodes which transport drinking
water from the supply source to the users. The optimal design of WDSs is very challenging.
These combinatorial optimization problems have non-linear objectives, large numbers of non-
linear constraints, extremely large discrete solution spaces and multi-modal objective spaces.
To enable the optimal design of real-life WDSs an effective solution method which is reliable,
easy to implement and computationally efficient is desired. One goal of WDS design among
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others (Kanakoudis 2004; Tanyimboh and Kalungi 2009, etc.) is to find the cheapest network
configuration which provides an adequate pressure at all user outlets.

Heuristic search techniques are considered ideal tools in solving WDS design
optimisation problems and genetic algorithms (GAs) are perhaps the most widely
used method (see e.g. Siew and Tanyimboh 2012). However, many alternative heu-
ristics techniques have also been applied (see e.g. Bolognesi et al. 2010). Memetic
algorithms (MAs) are hybrid methods which combine the powerful explorative search
capabilities of heuristic methods with some form of local improvement or exploitation,
and these methods are increasingly being applied to real-world optimisation problems.
Local improvement methods can effectively converge towards locally optimal solu-
tions; however, they have no capacity to identify global optima. A hybrid method
which harnesses the exploitation of local improvement with the exploration of GAs
therefore has the potential to improve the convergence of a standard GA and reduce
the computation time required.

Memetic algorithms have been applied in the solution of least-cost WDS design. Starting
with a GA as the heuristic search mechanism, local improvement has been incorporated into
the algorithm using machine learning (di Pierro et al. 2009), cellular automaton (Guo et al.
2007), linear programming (Cisty 2010), integer linear programming (Haghighi et al. 2011)
and a variety of classical local search techniques (Banos et al. 2010). Additionally, hybrid
methods such as the shuffled frog leaping algorithm (Eusuff and Lansey 2003), scatter search
with simulated annealing (Banos et al. 2009), differential evolution (DE) with non-linear
programming (NLP) (Zheng et al. 2011) and a method combining a classical local search
technique with a dynamic dimension reduction technique (Tolson et al. 2009) have all been
tested on various benchmark problems.

In this paper a multiobjective memetic algorithm is introduced. The MA hybridises a robust
GAwith local improvement based on the classical Hooke and Jeeves direct search method and
a cultural improvement operator. This MA is tested here on the solution of the least-cost WDS
design problem.

2 Multi-Objective Formulation of the Least-cost WDS Design Problem

There has been growing recognition of late in the water engineering community that
the least-cost design of a WDS is more accurately represented as a multi-objective
optimisation problem, where the conflicting objectives are cost and network perfor-
mance. The cost, which is to be minimised, covers the capital expenditure required to
construct the network. For simplicity, the only cost considered here is the initial
capital expenditure; more realistic approaches to costing over the entire lifetime of a
network are available in e.g. Skipworth et al. (2002) and Tanyimboh and Kalungi
(2008). The network cost is

f 1 xð Þ ¼
X
i¼1

NP

c di; lið Þ ð1Þ

where the cost of a specific pipe is given by the function c which is dependent on the
length and diameter of the ith pipe, NP is the number of pipes in the network and x is
the decision variable vector, to be defined.

The performance of a network is measured here using the total nodal pressure deficit
throughout the network, which is to be minimised. While this measure is simplistic, it is
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straightforward to implement and inexpensive to compute. The total pressure deficit across the
network is

f 2 xð Þ ¼
X
j¼1

NN

max hr j−hp j
; 0

� �
ð2Þ

where the required head and the achieved head at node j are hr j and hp j
respectively and NN is

the number of demand nodes. This objective addresses the minimum nodal pressure con-
straints

hp j
≥hr j for j ¼ 1;…;NN ð3Þ

The multi-objective least-cost WDS design problem is therefore formally expressed as

min
x∈F

f xð Þ ¼
�
f 1 xð Þ; f 2

�
x
��T

ð4Þ

where f1 and f2 are given by Eqs. (1) and (2) respectively and F is the feasible decision space.
By considering the nodal deficits as an objective a WDS designer is able to assess whether the
extra cost required to achieve a feasible solution is preferable to a slight shortfall in flow and
pressure for a cheaper cost. This is more representative of the real-life situation in designing
WDSs. In general, the problem specification for a particular WDS will define the non-linear
cost function, c, the length of each pipe, l, and the required head at each node, hr. The decision

variables in this formulation are therefore the discrete pipe diameters, x ¼ d1;…; dNPð ÞT ,
which control the nodal heads, hp, throughout the network. The problem concerns solving
Eq. (4) subject to the conservation of mass and energy constraints over the set of all feasible
(commercially available) pipe-diameters, F. By analysing each network design configuration
with a hydraulic solver, satisfaction of the conservation of mass and energy constraints is
guaranteed.

3 Memetic Algorithm

A GA is the main optimisation tool which comprises the MA proposed here. GAs are
particularly effective in solving multi-objective problems, as the population of solutions
provides a natural setting for producing the Pareto-optimal front. The strengths of a GA are
well suited to the optimal design of a WDS; however, their stochastic nature can result in slow,
unreliable convergence. As the hydraulic evaluation of a WDS requires an external solver,
each fitness evaluation is important. For real-life networks that can have hundreds or thousands
of pipes the CPU time to evaluate a single candidate solution can be substantial, and the time
required to simulate the hydraulic response of millions of candidate solutions over the
evolution of a GA could be restrictive. Quick, robust convergence to the optimal solution is
therefore extremely desirable.

3.1 Implementation of Local Improvement

The MA proposed here consists of a GA concurrently hybridised with local and cultural
improvement operators; the GA operates as normal, except that every NG generations the child
population is generated using the local and cultural improvement operators instead of the
standard selection, crossover and mutation operators. The best Npop individuals are then
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selected according to rank and crowding distance from the child and parent populations. The
next generation of parent population is thus formed and the GA continues as normal, where
Npop is the population size. This allows the local and cultural improvement to slot neatly into
the framework of the GA with minimal increase in complexity. The structure of the MA is
illustrated in Fig. 1.

It is common in the WDS literature to measure a solution by its effectiveness at locating the
least-cost zero-deficit, i.e. hydraulically feasible, solution. This solution occupies one extrem-
ity of the current non-dominated front, and individuals which reside in this low-deficit region
of objective space are more likely to be modified through local improvement to obtain the
optimal solution than individuals residing in any other region of objective space. For this
reason only a subset of the population which is in some proximity to the cost-effective low-
deficit region of the current population will be considered for selection. The subset of the
population from which individuals may be selected is denoted by S, and this subset is
characterised by the parameter NLS, such that S comprises the NLS% of individuals in the
current non-dominated front with the lowest deficits. At each generation when local improve-
ment is to be applied, one member of S is randomly selected as the starting point for the search.
The search then moves to the next individual along the non-dominated front until Npop children
have been created; in this way each implementation will result in a localised area of the front
being improved.

3.2 Scalar Assessment of Fitness

Measuring the fitness of a solution generated through local search in a similar manner to the
Pareto-based fitness assessment used in a multiobjective GAwould require each new solution
to be compared with the entire current population using the computationally intensive non-
dominated sorting and crowding distance operators. A far more efficient method involves
replacing the multi-objective fitness function of Eq. (4) with a surrogate measure which
represents an individual’s multi-dimensional fitness vector as a scalar fitness value. The
multi-objective problem is thus transformed into a single-objective problem and classical
optimisation techniques can then be applied to locally improve a solution. The current state-
of-the-art in classical approaches to multi-objective problems employ techniques which utilise
surrogate measures (Erfani and Utyuzhnikov 2011).

Fig. 1 Flow-chart describing the operation of the memetic algorithm
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The scalar fitness assessment used here is the standard linear weighting method (Miettinen
1998), where each objective function is scaled by a weighting coefficient and the surrogate
objective is to minimise the weighted sum of both objectives. That is,

min
x∈F

g xð Þ ¼
X
i

wi f i xð Þ;
X
i

wi ¼ 1; wi > 0;∀i: ð5Þ

in which wi is the weight associated with the ith objective function, fi.
In the two-dimensional objective space of a WDS least-cost design problem, the weighted

fitness function (WFF) in Eq. (5) defines a line with a negative gradient which cuts the positive
axis of both objective functions, as displayed in Fig. 2. To reduce the value of the fitness
function g, a solution must be found which can focus the search towards the Pareto-optimal
front. The effectiveness of the WFF is dependent on the orientation of the line g with respect to
the current non-dominated front; this orientation is defined solely by the weighting co-
efficients and appropriate definition of these weights is therefore crucial in conducting a
successful local search. The WFF must be locally relevant to the selected individual, which
acts as the starting point for the local search, and any improvements with respect to the WFF
should coincide with actual improvements to the starting individual or the population as a
whole.

Figure 2 displays a particular WFF g with fixed weights and a WFF with the same weights
intersecting the non-dominated front in a given generation at the location of three solutions or
individuals, Ia, Ib and Ic. At the locations of individuals Ia and Ic, the WFF cuts through the
front. An individual identified through local search as an improvement could occupy anywhere
below the WFF, as indicated by the hatched region at each individual. There is clearly an
overlap between the hatched region at each individual Ia and Ic and the regions of the objective
space which are currently dominated, which reduces the effectiveness of this WFF at the
locations of these individuals. Figure 2 also shows that the WFF is almost tangential to the
front at the position of individual Ib. Any individuals identified through local search which
improve the value of the WFF will also improve the population as a whole. This is clearly a
more desirable situation and designing a WFF which approximates the gradient of the current
non-dominated front at the location of the starting individual is more effective. AWFF defined

Fig. 2 Weighted fitness function and non-dominated front with three solutions and their regions of possible
improvement
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in this way is unable to guarantee a search in a non-dominated region of the objective space if
the front is concave at that location; however, in reality the front is discrete and therefore will
not be truly concave or convex at any given location.

As the explicit form of the current non-dominated front is not known at a given location, the
gradient of the front cannot be analytically determined and a numerical approximation must be
utilised. To approximate the gradient of the non-dominated front at a given location, a group of
individuals around the chosen location are selected and the gradient of the best-fitting straight
line through these individuals is found using a least-squares method. The gradient m around an
individual Ii is approximated here by (Berendsen 2011)

m ¼

X
j¼−NI

NI

f 1 I iþ j

� �
− f̄ 1

� �
f 2 I iþ j

� �
− f̄ 2

� �

X
j¼−NI

NI

f 1 I iþ j

� �
− f̄ 1

� �2
ð6Þ

where Ii indicates the ith individual along the current non-dominated front, f1(Ii) and f2(Ii) are
the respective objective function values corresponding to individual Ii and f1 and f2 are the
respective average objective function values for all individuals in this group. We use a sample
of 2NI+1 individuals to generate the gradient. The first NI individuals are selected in each
direction along the current non-dominated front from the position of individual Ii. Smaller
groups of individuals will provide a more accurate representation of a gradient local to a given
point on the Pareto-front, and this is supported by our investigations. As the 2NI+1 individuals
are mutually non-dominating, it can be shown from Eq. (6) that the gradient m is strictly
negative. Defining the weights as

w1 ¼ −m
1−m

w2 ¼ 1

1−m

ð7Þ

therefore ensures the requirement ∑wi=1 in Eq. (5) is satisfied. The multi-objective problem
given by Eq. (4) is thus replaced with the single-objective problem given by Eqs. (5) and (7).

3.3 Single Objective Optimisation

Problem (5) can be approached as a non-linear unconstrained problem with the conservation of
mass and energy constraints externally satisfied by the hydraulic solver as discussed in
Section 2. The solution technique used here to perform the local search is based on the
zero-order Hooke and Jeeves method. This method combines a basic univariate search step
with a pattern search step which exploits the cumulative effect of each decision variable search
performed in the previous step. The method is simple to implement and can be applied to any
objective function. The decision variables are selected in a random order and each decision
variable is optimised in turn. This is achieved by applying a unit step in one direction (either an
incremental or decremental step) of the decision variable. If this step does not improve the
fitness value a step in the opposite direction is applied. The optimal decision variable value
found so far is retained (either original, incremented or decremented value) and the search
continues with the next randomly selected decision variable. If at any point a step in a
particular direction would result in an infeasible decision variable value, this step is not
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explored and the search moves onto the next stage. When the maximum number of decision
variables have been investigated (either the number of decision variables related to the problem
or some pre-specified limit), the pattern search step is applied. The difference between the
current optimal value for each decision variable and the original decision variable value is
calculated. This difference identifies a pattern search direction which improves the original
solution over all decision variables. The pattern search direction is then exploited further by
performing an additional search in this direction. The process then repeats, performing another
univariate search from the current optimal position.

3.4 Cultural Learning

The final component of the MA is cultural learning where a localised group of individ-
uals learn from each other what constitutes an improvement. The pattern direction
generated from the Hooke and Jeeves operator in Section 3.3 constitutes a direction of
improvement in decision space, where improvement is measured relatively to the WFF.
The WFF defined in Section 3.2 such that it approximates the gradient to the current
non-dominated front at a particular location in objective space may also give a close
approximation to the gradient of the front at the location of nearby individuals. A group
of consecutive individuals along a non-dominated front occupy a similar region of
objective space in terms of the relationship between cost and deficit for each individual.
To achieve the same balance between cost and deficit, it is likely that an individual will
share some combinations of decision variables with its neighbours. A pattern direction
for one individual, which identifies a direction of improvement in decision space, may
therefore lead to improvements if applied to the neighbouring individuals.

The cultural learning operator is implemented after the local search discussed above has
taken place. A group of NC concurrent individuals along the non-dominated front, which is
centered on the individual selected for local improvement, is selected for cultural learning. It is
assumed that the group of concurrent individuals will have enough similarities in decision
variables and will be close enough in objective space to the gradient specified by the WFF that
this is an appropriate measure of improvement. The pattern direction is therefore applied to
each individual in the group to generate new individuals in the child population. This cultural
learning step will enable larger regions of objective space to be locally improved per
generation, as the Hooke and Jeeves search is only applied to one member of the group.
The number of children generated from one group of individuals is therefore less than the
number that would be required if the Hooke and Jeeves search was applied to every individual
in the group, so more groups of individuals can be improved and larger regions of the non-
dominated front can be searched.

4 Results

To demonstrate the effectiveness of the MA, its performance is compared with a standard GA
for the solution of two benchmark problems in Kadu et al. (2008) and Reca and Martinez
(2006). Although neither of these benchmark problems is truly representative of the complex-
ity of a real-life WDS network, they are still difficult problems to solve by conventional
optimisation methods with decision spaces of 1039 and 10454 solutions. These problems
therefore provide an insight as to the applicability of a new solution method. In the results
which follow the MA and the underlying GA are tested using several termination conditions.
In each experiment the performance of both the algorithms is estimated using 100 randomly
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initiated optimization runs. Also, the MA’s results are compared with the best available
solutions in the literature based on various other solution approaches.

4.1 Parallelisation of the Algorithms

In order to improve computation times the operation of the GA and the MAwere parallelised.
Two separate parallelisation methods were utilised, each designed to address a particular
computational burden. In a single optimisation run the large number of network evaluations
performed can lead to substantial computation times, particularly for larger problems. In order
to speed up the progress of the evolution a controller-worker model was implememented,
where the controller performs the routine operation of the algorithm and employs the workers
to perform the fitness evaluations. Additionally, an island model was employed so independent
optimisation runs are performed simultaneously. This combination yields a series of islands,
each performing separate optimisation runs, with a controller-worker architecture between the
processors assigned to each island. This combined approach enables substantially more
processors to be employed than would be available if either of the parallelisation models were
used alone. To perform the optimisation runs the high-performance computer at the University
of Strathclyde (HPCUOS) was used. This facility has 1048 cores, each with 2.93 GHz CPU
and 12 GB RAM. A range of cores from 16 to 160 was utilised, depending on the requirements
of a particular optimisation. The benefits of this parallelisation are that an optimisation which
would have taken approximately 160 days with a single processor on a workstation with 2
quad-core 2.27 GHz processors and 12 GB RAMwas perfomed in just over 1 day, a reduction
of over 99 %.

4.2 Baseline GA

We used the Pareto-based elitist multiobjective genetic algorithm NSGA II (Deb et al. 2002) as
the baseline GA upon which the MA is constructed. The framework of the MA given in
Section 3 is designed to be simple to implement and complimentary with any GA. Hence any
alternative GA could be used. The decision variables are integer-coded, where each integer
represents a specific pipe-size. One-point crossover is applied to generate two children from a
pair of parents derived from a randomly populated binary tournament. Mutation is applied to
each decision variable of each child with a probability of pm. If a particular decision variable is
selected for mutation, then, either a random mutation, where a new value is selected at random,
or a creeping mutation is applied, where either the next larger or next smaller value is selected,
each with a conditional probability of 0.5. If the decision variable is equal to a boundary value,
the feasible adjacent value is selected with a conditional probability of 1. Both random and
creeping mutation are applied with a conditional probability of 0.5 each.

4.3 Parameter Values

The parameter values which are used throughout the Results section are as follows: probability
of crossover, pc=1; probability of mutation, pm=1/Np; Np is the number of decision variables
or pipes in each problem; population size, Npop=200 (Kadu network) and Npop=500 (Balerma
network); frequency of applying local and cultural improvement operators, NG=10; number of
individuals to generate the WFF, NI=1; number of concurrent individuals selected for cultural
improvement, NC=4; percentage of non-dominated front available for local improvement,
NLS=20 %. The difference in population size between networks is motivated by the extremely
large increase in the search space of the Balerma network. Zheng et al. (2011) who have found
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the least-cost solution for the Balerma network to date used a population size of 500 also. A
preliminary sensitivity analysis was performed on each parameter: first the GA parameters
were investigated and a combination of good parameter values were found. The same values
were then used for the MA and the additional MA parameters were then investigated. The
values used here were found to perform well collectively, however, it may be that different
combinations of these parameter values provide comparable or even better results – this is an
area of ongoing investigations. The respective network-specific design data can be found in
Kadu et al. (2008) and Reca and Martinez (2006).

4.4 Kadu et al. (2008) Network

The WDS consists of two reservoirs, 26 nodes and 34 pipes. There are 14 discrete pipe sizes
giving a solution space of 1434 or almost 1039 design configurations. The cheapest solution
previously found to this problem is Rs131.31×106 (Haghighi et al. 2011) with the Hazen–
Wiliams formula as hf=ωl(Q/C)

1.85d-4.87 where hf=headloss; ω = coefficient for the system of
units; l = pipe length; Q = pipe flow rate; d = diameter; and C = roughness coefficient.
However this solution is hydraulically feasible in Epanet 2.0 only if ω≤10.5361 when the
units are (m, m3/s). We used the standard Epanet 2.0 formulation (Rossman 2000) that is
common in the literature, i.e. hf=10.6668×l(Q/C)

1.852d-4.871. The initial termination condition
is set to 107 FEs to investigate the performance of the algorithms over a relatively long
evolution period. A new least-cost solution of Rs124.69×106 is found here using the more
restrictive head-loss parameters standard in Epanet 2.0, representing a 5.04 % reduction of the
least-cost solution previously reported. The pipe diameters and nodal heads produced by the
previous optimal solution of Rs131.31×106 and the new optimal solution of Rs124.69×106

are compared in Fig. 3. The infeasible head for node 23 for the previous optimal solution is
evident in Fig. 3(a). In Table 1 the performance of each algorithm is summarized. It is evident
that the MA performs better than the GA in terms of converging to good solutions, achieving a
lower average final least-cost solution. Using the HPCUOS with 16 nodes comprising 2
islands the average CPU time for a single optimisation run of 107 FEs is 0.943 h for the GA
and 0.853 h for the MA. The smallest number of FEs it took to find the optimal solution was
2,572,200 for the GA and 142,000 for the MA.

This network represents a substantial challenge. It has not been widely studied and there are
limited details available with regard to the performance of the two algorithms presented for
comparison with the MA in Table 2. The termination conditions used here for equitable
comparisons are 4,400 FEs and 120,000 FEs. The best costs displayed were found only once
by each algorithm and so the rates of converging to these costs are omitted. With the
termination condition of 120,000 FEs, the best solution found and the average cost are cheaper
for both the MA and the GA than the comparative studies. The best cost found by the GA is
within 1 % of the optimal solution given in Table 1 and the average cost is only 3.6 % greater
than this optimal solution. In comparison, the MA locates a solution which is only 0.1 %
greater than the optimal solution and on average finds a solution within 1.6 % of the optimal
solution. It is evident the performance of the MA is particularly impressive given the relatively
small number of FEs allowed.

4.5 Balerma Network

The network is an adaptation of a real irrigation network in Balerma, Spain (Reca and
Martinez 2006) and comprises 443 demand nodes, four supply nodes and 454 pipes forming
eight loops. There are 10 commercially available pipe-sizes giving a solution space of 10454.
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This demonstrates the substantial challenge in designing a real-world WDS. Head-losses are
calculated using the Darcy–Weisbach equation with an absolute pipe roughness of k=
0.0025 mm. The required pressure head at each demand node is 20 m. The best solution to
date for the Balerma network was found by Zheng et al. (2011) costing M€1.923, with the
second best solution found by Tolson et al. (2009) costing M€1.940.

Previous investigations on this network have employed between 10 and 100 random trials
over 107 FEs, and to the best of our knowledge, no previous investigation has converged to
their own best result more than once over all trials. This indicates that these algorithms are not
converging over 107 FEs. Consequently the GA and the MA are compared here initially using
a termination condition of 108 FEs in an attempt to achieve better convergence (Table 1). The

(a) Heads

(b) Diameters

Fig. 3 Previous and new optimised heads and diameters for the Kadu network
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best solutions found by the GA and MA are M€1.929 and M€1.924 respectively, which are
both cheaper than the solution found by Tolson et al. and are both within 0.5 % of the solution
found by Zheng et al. The most expensive least-cost solution found was M€1.949 for the GA
and M€1.937 for the MA. Each algorithm found its own best solution only once over the 100
random trials; in fact, neither the GA nor the MA converged to the same solution more than
once after the 108 FEs. This indicates that neither algorithm is converging with respect to the
least-cost solution, despite the large number of FEs used. Each run is therefore converging to a
similar final population, with the main discernible difference that the least-cost solution is
different in each case. From Table 1 it is clear that the MA outperforms the GAwith respect to
every measure. In particular, the MA finds a solution within 1 % of the solution found by
Zheng et al. in under 4 % of the FEs required by the GA and the final solution found is lower
on average with less deviation for the MA than the GA. Using the HPCUOS with 160
processors comprising 20 islands, the average CPU time for a single optimisation run of 108

FEs is 4.919 h for the GA and 4.894 h for the MA.
In Table 3 the GA and the MAwith the termination condition 107 FEs are compared with a

selection of results from the literature. Using the HPCUOS with 16 processors comprising 16

Table 1 Assessment of the genetic and memetic algorithms

Number of randomly initiated runs 100

Optimization problem a Kadu network b Balerma network

Termination criterion (FEs×106) 10 100

Algorithm GA MA GA MA

Cheapest final cost found (106) 124.69 124.69 1.929 1.924

Average final cost found (106) 125.48 125.39 1.938 1.928

Standard deviation of final cost (106) 0.313 0.349 0.005 0.003

Average number of FEs required to find a feasible
solution within 1 % of current best (106)

0.6656 0.084 57.80 2.30

Average CPU time per optimization run (hours) 0.943 0.853 4.919 4.894

Costs are in a Rupees and b Euros respectively for the a Kadu and b Balerma networks

Table 2 Comparison of published results for the Kadu network

Approach Best cost found
(Rs×106)

Average cost
(Rs×106)

Convergence to best
cost found (FEs)

Number
of runs

Max FEs

Kadu et al. 2008 131.68a Ub 120,000c 10 120,000

Haghighi et al. 2011 131.31a Ub 4,400c Ub 4,400

MA (Case 1) 124.82 126.67 39,100 100 120,000

MA (Case 2) 134.68 162.64 4,400c 100 4,400

NSGA II 125.69 129.19 108,200 100 120,000

a Hydraulically infeasible solutions
b U indicates this value is unclear from the reference
c Same as termination criterion
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islands the average CPU time for a single optimisation run of 107 FEs is 2.18 h for the GA and
1.84 h for the MA. As discussed above, all algorithms in Table 3 converge to their own best
solution only once. The MA performs better than the standard GAwith respect to every measure
and only the NLP-DE algorithm (Zheng et al. 2011) provides better results than theMA. The best
cost found by theMA is M€1.927 which is a 0.2 % increase on the best cost found with NLP-DE
by Zheng et al. ofM€1.923, and the average final cost found by theMA is only 0.4% greater than
that found by NLP-DE. However the NLP-DE algorithm comprises three stages. First the WDS
network is converted from a looped network to a branched network by identifying the shortest-
distance tree using graph theory. This branched network is then optimised using continuous
diameters and a commercial non-linear programming software. The final step uses the non-linear
programming solution of the branched network problem to restrict the search space for the initial
seeding of a differential evolution optimisation. The differential evolution then proceeds as
standard. This approach can therefore be characterised as a differential evolution optimisation
with substantial pre-processing of the network. There are no published details regarding the NLP
used and any increase in CPU time incurred by the overall NLP-DE procedure compared to the
standard DE used in that study. The MA described here is much simpler to implement as it is a
purely iterative procedure which is initiated randomly and requires no prior network preparation
or analysis. Additionally, the MA is more computationally efficient than the standard GA and
requires no external optimiser. The results of Table 3 indicate that despite the simplicity of the
MA, the quality of the solution is comparable with that found by the more complex NLP-DE
procedure. Indeed, further improvements were achieved after reducing the solution space as
summarized in the Appendix. A new best solution was found.

5 Conclusions

A memetic algorithm (MA) is developed and compared with a robust and widely used genetic
algorithm (GA) in the solution of the least-cost water distribution system (WDS) design problem.
The problem is formulated as a multi-objective optimisation, with the competing objectives to
minimise cost and maximise network performance. Two benchmark WDS networks are used to
test the performance of theMA. TheMA is found to substantially outperform the GA in each case,
demonstrating improved convergence speed and convergence rates. In comparison with other

Table 3 Comparison of published results for the Balerma network

Algorithm Best cost (€) Average
cost (€)

Convergence to best
cost found (FEs×106)

Number
of runs

Max FEs
(×106)

Zheng et al. 2011a 1,923,000 1,927,000 1.43a 10 10

Tolson et al. 2009 1,940,923 Ub Ub 10 30

Bolognesi et al. 2010 2,002,000 2,055,000 0.25 10 10

Reca and Martinez 2006 2,302,423 2,334,075 Ub 10 10

NSGA II 1,955,039 1,984,131 9.70 100 10

MA (full solution space) 1,926,998 1,935,050 8.43 100 10

MA (reduced solution space)c 1,920,656 1,921,843 7.31 100 10

a A direct comparison is not obvious as the differential evolution in NLP-DE is preceded by graph theory, NLP
and search space reduction
b U indicates this value is unclear from the reference
c The details are in the Appendix
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studies in the literature the MA is shown to be highly competitive. This investigation indicates that
the local search and cultural improvement operators introduced here could be a useful tool in
achieving competitive solutions to the design of real-life WDS networks in tractable time periods.
Future investigations could combine the local and cultural improvement operators defined here
with alternative baseline GAs, or alternative evolutionary computing techniques.
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Appendix: Search Space Reduction on the Balerma Network

For the Balerma network, as an alternative to the protracted optimization runs of 108

FEs in Table 1, we used engineering judgement to reduce the search space prior to
the optimisation. The number of decision variables was reduced from 454 to 171 by
removing the decision variables whose optimal values did not vary across the previ-
ous investigations. The remaining 171 decision variables were then restricted to three
possible pipe sizes based on the previous investigations. This process reduced the
search space from 10454 to 3171 or 3.87×1081 possible solutions. Applying the MA to
this reduced problem yielded a new optimal solution after 107 FEs of €1,920,656,
which was found once out of 100 random runs. Details on the 100 runs of the MA on
this reduced problem are also included in Table 3. The median, maximum and the
standard deviation of the least-cost solutions found across the 100 runs are
€1,921,708, €1,923,897 and €707 (0.04 % of the corresponding mean value in Table 3)
respectively. These solutions are a substantial improvement on any other method in
Table 3. Using the HPCUOS with 16 processors comprising 16 islands the average
CPU time for a single optimisation run of 107 FEs is 1.97 h. The nodal heads for the
new best solution (€1,920,656) are given in Fig. 4. The pipe diameters can be found
in Online Resource 1.

Fig. 4 Nodal heads for the Balerma network for the best memetic algorithm solution costing M€ 1.921
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