1,169 research outputs found

    Spontaneous mass current and textures of p-wave superfluids of trapped Fermionic atom gases at rest and under rotation

    Full text link
    It is found theoretically based on the Ginzburg-Landau framework that p-wave superfluids of neutral atom gases in three dimension harmonic traps exhibit spontaneous mass current at rest, whose direction depends on trap geometry. Under rotation various types of the order parameter textures are stabilized, including Mermin-Ho and Anderson-Toulouse-Chechetkin vortices. In a cigar shape trap spontaneous current flows longitudial to the rotation axis and thus perpendicular to the ordinary rotational current. These features, spontaneous mass current at rest and texture formation, can be used as diagnoses for p-wave superfluidity.Comment: 5 pages, 5 figure

    Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation

    Full text link
    We study the local well-posedness of the initial-value problem for the nonlinear "good" Boussinesq equation with data in Sobolev spaces \textit{HsH^s} for negative indices of ss.Comment: Referee comments incorporate

    Edge Current due to Majorana Fermions in Superfluid 3^3He A- and B-Phases

    Full text link
    We propose a method utilizing edge current to observe Majorana fermions in the surface Andreev bound state for the superfluid 3^3He A- and B-phases. The proposal is based on self-consistent analytic solutions of quasi-classical Green's function with an edge. The local density of states and edge mass current in the A-phase or edge spin current in the B-phase can be obtained from these solutions. The edge current carried by the Majorana fermions is partially cancelled by quasiparticles (QPs) in the continuum state outside the superfluid gap. QPs contributing to the edge current in the continuum state are distributed in energy even away from the superfluid gap. The effect of Majorana fermions emerges in the depletion of the edge current by temperature within a low-temperature range. The observations that the reduction in the mass current is changed by T2T^2-power in the A-phase and the reduction in the spin current is changed by T3T^3-power in the B-phase establish the existence of Majorana fermions. We also point out another possibility for observing Majorana fermions by controlling surface roughness.Comment: 13 pages, 4 figures, published versio

    Evidence for time-reversal symmetry breaking of the superconducting state near twin-boundary interfaces in FeSe

    Get PDF
    Junctions and interfaces consisting of unconventional superconductors provide an excellent experimental playground to study exotic phenomena related to the phase of the order parameter. Not only the complex structure of unconventional order parameters have an impact on the Josephson effects, but also may profoundly alter the quasi-particle excitation spectrum near a junction. Here, by using spectroscopic-imaging scanning tunneling microscopy, we visualize the spatial evolution of the local density of states (LDOS) near twin boundaries (TBs) of the nodal superconductor FeSe. The π/2\pi/2 rotation of the crystallographic orientation across the TB twists the structure of the unconventional order parameter, which may, in principle, bring about a zero-energy LDOS peak at the TB. The LDOS at the TB observed in our study, in contrast, does not exhibit any signature of a zero-energy peak and an apparent gap amplitude remains finite all the way across the TB. The low-energy quasiparticle excitations associated with the gap nodes are affected by the TB over a distance more than an order of magnitude larger than the coherence length ξab\xi_{ab}. The modification of the low-energy states is even more prominent in the region between two neighboring TBs separated by a distance 7ξab\approx7\xi_{ab}. In this region the spectral weight near the Fermi level (±\approx\pm0.2~meV) due to the nodal quasiparticle spectrum is almost completely removed. These behaviors suggest that the TB induces a fully-gapped state, invoking a possible twist of the order parameter structure which breaks time-reversal symmetry.Comment: 12 pages, 6 figure

    Genetic and Epigenetic Alterations of Lysophosphatidic Acid Receptor Genes in Rodent Tumors by Experimental Models

    Get PDF
    Lysophosphatidic acid (LPA) is a bioactive mediator and induces several biological effects, including cell proliferation, migration, morphogenesis and differentiation. LPA interacts with at least six G protein-coupled receptors (GPCRs), including LPA receptor-1 (LPA1), LPA2, LPA3, LPA4, LPA5 and LPA6. These receptors show different biological functions through the binding of LPA, depending on the type of cells. In human malignancies, a high level of LPA production was found in plasma and ascites in ovarian cancer cases. Moreover, aberrant expression levels of LPA receptor genes were detected in some cancer cells. Therefore, it is suggested that LPA receptors may be involved in the pathogenesis of tumor cells as well as LPA per se. Recently, we have reported that alterations of LPA receptor genes also occur in rodent tumors. In this review, we summarize the recent evidence in the investigations of LPA receptor alterations in rodent tumors by experimental models

    Singular Vortex in Narrow Cylinders of Superfluid 3He-A Phase

    Full text link
    Motivated by the on-going rotating cryostat experiments in ISSP, Univ. of Tokyo, we explore the textures and vortices in superfluid 3He-A phase confined in narrow cylinders, whose radii are R=50mum and 115mum. The calculations are based on the Ginzburg-Landau (GL) framework, which fully takes into account the orbital (l-vector) and spin (d-vector) degrees of freedom for chiral p-wave pairing superfluid. The GL free energy functional is solved numerically by using best known GL parameters appropriate for the actual experimental situations at P=3.2MPa and H=21.6mT. We identify the ground state l-vector configuration as radial disgyration (RD) texture with the polar core both at rest and low rotations and associated d-vector textures for both narrow cylinder systems under high magnetic fields. The RD which has a singularity at center, changes into Mermin-Ho texture above the critical rotation speed which is determined precisely, providing an experimental check for own proposal.Comment: 22 pages, 12 figure

    Fabrication of high quality plan-view TEM specimens using the focused ion beam

    Get PDF
    We describe a technique using a focused ion beam instrument to fabricate high quality plan-view specimens for transmission electron microscopy studies. The technique is simple, site-specific and is capable of fabricating multiple large, >100 μm2 electron transparent windows within epitaxially-grown thin films. A film of La0.67Sr0.33MnO3 is used to demonstrate the technique and its structural and functional properties are surveyed by high resolution imaging, electron spectroscopy, atomic force microscopy and Lorentz electron microscopy. The window is demonstrated to have good thickness uniformity and a low defect density that does not impair the film’s Curie temperature. The technique will enable the study of in–plane structural and functional properties of a variety of epitaxial thin film systems

    Flat bands in topological media

    Full text link
    Topological media are systems whose properties are protected by topology and thus are robust to deformations of the system. In topological insulators and superconductors the bulk-surface and bulk-vortex correspondence gives rise to the gapless Weyl, Dirac or Majorana fermions on the surface of the system and inside vortex cores. Here we show that in gapless topological media, the bulk-surface and bulk-vortex correspondence is more effective: it produces topologically protected gapless fermions without dispersion -- the flat band. Fermion zero modes forming the flat band are localized on the surface of topological media with protected nodal lines and in the vortex core in systems with topologically protected Fermi points (Weyl points). Flat band has an extremely singular density of states, and we show that this property may give rise in particular to surface superconductivity which could exist even at room temperature.Comment: 9 pages, 5 figures, version to appear in JETP Letter

    Pressure induced high-spin to low-spin transition in FeS evidenced by x-ray emission spectroscopy

    Full text link
    We report the observation of the pressure-induced high-spin to low-spin transition in FeS using new high-pressure synchrotron x-ray emission spectroscopy techniques. The transition is evidenced by the disappearance of the low-energy satellite in the Fe Kβ\beta emission spectrum of FeS. Moreover, the phase transition is reversible and closely related to the structural phase transition from a manganese phosphide-like phase to a monoclinic phase. The study opens new opportunities for investigating the electronic properties of materials under pressure.Comment: ReVTeX, 4 pages, 3 figures inserted with epsfig. minor modifications before submission to PR

    Acoustic radiation controls friction: Evidence from a spring-block experiment

    Full text link
    Brittle failures of materials and earthquakes generate acoustic/seismic waves which lead to radiation damping feedbacks that should be introduced in the dynamical equations of crack motion. We present direct experimental evidence of the importance of this feedback on the acoustic noise spectrum of well-controlled spring-block sliding experiments performed on a variety of smooth surfaces. The full noise spectrum is quantitatively explained by a simple noisy harmonic oscillator equation with a radiation damping force proportional to the derivative of the acceleration, added to a standard viscous term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR
    corecore