145 research outputs found

    Rosuvastatin prevents myocardial necrosis in an experimental model of acute myocardial infarction

    Get PDF
    Dyslipidemia is related to the progression of atherosclerosis and is an important risk factor for acute coronary syndromes. Our objective was to determine the effect of rosuvastatin on myocardial necrosis in an experimental model of acute myocardial infarction (AMI). Male Wistar rats (8-10 weeks old, 250-350 g) were subjected to definitive occlusion of the left anterior descending coronary artery to cause AMI. Animals were divided into 6 groups of 8 to 11 rats per group: G1, normocholesterolemic diet; G2, normocholesterolemic diet and rosuvastatin (1 mg·kg-1·day-1) 30 days after AMI; G3, normocholesterolemic diet and rosuvastatin (1 mg·kg-1·day-1) 30 days before and after AMI; G4, hypercholesterolemic diet; G5, hypercholesterolemic diet and rosuvastatin (1 mg·kg-1·day-1) 30 days after AMI; G6, hypercholesterolemic diet and rosuvastatin (1 mg·kg-1·day-1) 30 days before and after AMI. Left ventricular function was determined by echocardiography and percent infarct area by histology. Fractional shortening of the left ventricle was normal at baseline and decreased significantly after AMI (P < 0.05 in all groups), being lower in G4 and G5 than in the other groups. No significant difference in fractional shortening was observed between G6 and the groups on the normocholesterolemic diet. Percent infarct area was significantly higher in G4 than in G3. No significant differences were observed in infarct area among the other groups. We conclude that a hypercholesterolemic diet resulted in reduced cardiac function after AMI, which was reversed with rosuvastatin when started 30 days before AMI. A normocholesterolemic diet associated with rosuvastatin before and after AMI prevented myocardial necrosis when compared with the hypercholesterolemic condition

    Chemical Potential Shift in Nd2x_{2-x}Cex_{x}CuO4_{4}: Contrasting Behaviors of the Electron- and Hole-Doped Cuprates

    Full text link
    We have studied the chemical potential shift in the electron-doped superconductor Nd2x_{2-x}Cex_{x}CuO4_{4} by precise measurements of core-level photoemission spectra. The result shows that the chemical potential monotonously increases with electron doping, quite differently from La2x_{2-x}Srx_{x}CuO4_{4}, where the shift is suppressed in the underdoped region. If the suppression of the shift in La2x_{2-x}Srx_{x}CuO4_{4} is attributed to strong stripe fluctuations, the monotonous increase of the chemical potential is consistent with the absence of stripe fluctuations in Nd2x_{2-x}Cex_{x}CuO4_{4}. The chemical potential jump between Nd2_{2}CuO4_{4} and La2_{2}CuO4_{4} is found to be much smaller than the optical band gaps.Comment: 4 pages, 5 figure

    On the Completeness of the Set of Classical W-Algebras Obtained from DS Reductions

    Full text link
    We clarify the notion of the DS --- generalized Drinfeld-Sokolov --- reduction approach to classical W{\cal W}-algebras. We first strengthen an earlier theorem which showed that an sl(2)sl(2) embedding SG{\cal S}\subset {\cal G} can be associated to every DS reduction. We then use the fact that a \W-algebra must have a quasi-primary basis to derive severe restrictions on the possible reductions corresponding to a given sl(2)sl(2) embedding. In the known DS reductions found to date, for which the \W-algebras are denoted by WSG{\cal W}_{\cal S}^{\cal G}-algebras and are called canonical, the quasi-primary basis corresponds to the highest weights of the sl(2)sl(2). Here we find some examples of noncanonical DS reductions leading to \W-algebras which are direct products of WSG{\cal W}_{\cal S}^{\cal G}-algebras and `free field' algebras with conformal weights Δ{0,12,1}\Delta \in \{0, {1\over 2}, 1\}. We also show that if the conformal weights of the generators of a W{\cal W}-algebra obtained from DS reduction are nonnegative Δ0\Delta \geq 0 (which isComment: 48 pages, plain TeX, BONN-HE-93-14, DIAS-STP-93-0

    Mechanisms of organelle division and inheritance and their implications regarding the origin of eukaryotic cells

    Get PDF
    Mitochondria and plastids have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. Organellar DNAs are not naked in vivo but are associated with basic proteins to form DNA-protein complexes (called organelle nuclei). The concept of organelle nuclei provides a new approach to explain the origin, division, and inheritance of organelles. Organelles divide using organelle division rings (machineries) after organelle-nuclear division. Organelle division machineries are a chimera of the FtsZ (filamentous temperature sensitive Z) ring of bacterial origin and the eukaryotic mechanochemical dynamin ring. Thus, organelle division machineries contain a key to solve the origin of organelles (eukaryotes). The maternal inheritance of organelles developed during sexual reproduction and it is also probably intimately related to the origin of organelles. The aims of this review are to describe the strategies used to reveal the dynamics of organelle division machineries, and the significance of the division machineries and maternal inheritance in the origin and evolution of eukaryotes

    A review on probabilistic graphical models in evolutionary computation

    Get PDF
    Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+ee^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore