12 research outputs found

    Global land characterisation using land cover fractions at 100 m resolution

    Get PDF
    Currently most global land cover maps are produced with discrete classes, which express the dominant land cover class in each pixel, or a combination of several classes at a predetermined ratio. In contrast, land cover fraction mapping enables expressing the proportion of each pure class in each pixel, which increases precision and reduces legend complexity. To map land cover fractions, regression rather than classification algorithms are needed, and multiple approaches are available for this task. A major challenge for land cover fraction mapping models is data sparsity. Land cover fraction data is by its nature zero-inflated due to how common the 0% fraction is. As regression favours the mean, 0% and 100% fractions are difficult for regression models to predict accurately. We proposed a new solution by combining three models: a binary model determines whether a pixel is pure; if so, it is processed using a classification model; otherwise with a regression model. We compared multiple regression algorithms and implemented our proposed three-step model on the algorithm with the lowest RMSE. We further evaluated the spatial and per-class accuracy of the model and demonstrated a wall-to-wall prediction of seven land cover fractions over the globe. The models were trained on over 138,000 points and validated on a separate dataset of over 20,000 points, provided by the CGLS-LC100 project. Both datasets are global and aligned with the PROBA-V 100 m UTM grid. Results showed that the random forest regression model reached the lowest RMSE of 17.3%. Lowest MAE (7.9%) and highest overall accuracy (72% ± 2%) was achieved using random forest with our proposed three-model approach and median vote. This research proves that machine learning algorithms can be applied globally to map a wide variety of land cover fractions. Fraction mapping expresses land cover more precisely, and empowers users to create their own discrete maps using user-defined thresholds and rules, which enables customising the result for a diverse range of uses. The three-step approach is useful for addressing the zero-inflation issue and mapping 0% and 100% fractions more accurately, and thus has already been taken up in the operational production of global land cover fraction layers within the CGLS-LC100 project. Furthermore, this study contributes to the accuracy assessment of land cover fraction maps both thematically and spatially, and these methods could be taken up by future land cover fraction mapping efforts

    Copernicus Global Land Service: Land Cover 100m: version 3 Globe 2015-2019: Validation Report

    Get PDF
    This Validation Report describes in detail the quality of the satellite-based 100m Land Cover product of the global component of the Copernicus Land Service. It includes assessments of yearly global land cover layers (2015-2019), assessment of change as well as comparison with the previous version using an independent validation dataset. The related Product User Manual is the starting point for the reader and summarizes all aspects of the product (algorithm, quality, contents, format, etc)

    Developing and applying a multi-purpose land cover validation dataset for Africa

    Get PDF
    The production of global land cover products has accelerated significantly over the past decade thanks to the availability of higher spatial and temporal resolution satellite data and increased computation capabilities. The quality of these products should be assessed according to internationally promoted requirements e.g., by the Committee on Earth Observation Systems-Working Group on Calibration and Validation (CEOS-WGCV) and updated accuracy should be provided with new releases (Stage-4 validation). Providing updated accuracies for the yearly maps would require considerable effort for collecting validation datasets. To save time and effort on data collection, validation datasets should be designed to suit multiple map assessments and should be easily adjustable for a timely validation of new releases of land cover products. This study introduces a validation dataset aimed to facilitate multi-purpose assessments and its applicability is demonstrated in three different assessments focusing on validating discrete and fractional land cover maps, map comparison and user-oriented map assessments. The validation dataset is generated primarily to validate the newly released 100 m spatial resolution land cover product from the Copernicus Global Land Service (CGLS-LC100). The validation dataset includes 3617 sample sites in Africa based on stratified sampling. Each site corresponds to an area of 100 m × 100 m. Within site, reference land cover information was collected at 100 subpixels of 10 m × 10 m allowing the land cover information to be suitable for different resolution and legends. Firstly, using this dataset, we validated both the discrete and fractional land cover layers of the CGLS-LC100 product. The CGLS-LC100 discrete map was found to have an overall accuracy of 74.6 ± 2.1% (at 95% confidence level) for the African continent. Fraction cover products were found to have mean absolute errors of 9.3, 8.8, 16.2, and 6.5% for trees, shrubs, herbaceous vegetation and bare ground, respectively. Secondly, for user-oriented map assessment, we assessed the accuracy of the CGLS-LC100 map from four user groups' perspectives (forest monitoring, crop monitoring, biodiversity and climate modelling). Overall accuracies for these perspectives vary between 73.7% ± 2.1% and 93.5% ± 0.9%, depending on the land cover classes of interest. Thirdly, for map comparison, we assessed the accuracy of the Globeland30-2010 map at 30 m spatial resolution. Using the subpixel level validation data, we derived 15,252 sample pixels at 30 m spatial resolution. Based on these sample pixels, the overall accuracy of the Globeland30-2010 map was found to be 66.6 ± 2.4% for Africa. The three assessments exemplify the applicability of multi-purpose validation datasets which are recommended to increase map validation efficiency and consistency. Assessments of subsequent yearly maps can be conducted by augmenting or updating the dataset with sample sites in identified change areas

    Time series analysis for global land cover change monitoring: A comparison across sensors

    No full text
    Comparing the performance of different satellite sensors in global land cover change (LCC) monitoring is necessary to assess their potential and limitations for more accurate and operational LCC estimations. This paper aims to examine and compare the performance in LCC monitoring using three satellite sensors: PROBA-V, Landsat 8 OLI, and Sentinel-2 MSI. We utilized a unique set of global reference data containing four years of records (2015–2018) at 29,263 land cover change/no-change 100 × 100-m sites. The LCC monitoring was conducted using the BFAST(s)-Random Forest (BRF) change detection framework involving 15 global timeseries vegetation indices and three BFAST models. Due to the different spectral characteristics and data availability of the sensors, we designed 30 comparison scenarios to extensively evaluate their performance. The overall results were: 1) for global general LCC monitoring, Landsat 8 OLI slightly outperformed Sentinel-2, and PROBA-V performed the worst. The performance among the three sensors differed consistently despite different data availability and spectral observation regions. Sentinel-2 was more competitive with Landsat 8 when the red-edge 1 band was included; 2) Landsat 8 was more accurate in forest, herbaceous vegetation, and water monitoring. Sentinel-2 performed particularly well in wetland monitoring. In addition, we further observed: 3) missing data in time series decreased the accuracy in all sensors, but had little influence on the relative performance across sensors; 4) combining sensors would not necessarily improve the accuracy because the complementary effects enhanced the accuracy only when there was a large amount of data missing for all sensors; 5) the BRF framework maintained the performance gap among sensors, but obtained a higher and more balanced accuracy overall when compared with using BFAST methods alone, by involving ensemble learning with an embedded sample-balancing strategy; 6) among the random forest variables, the ‘magnitude’ proved to be the most important contributor, and the NDVI had the most consistently good performance across sensors when compared against other vegetation indices. All sensors using BRF still had some errors in change detection, with a tendency to underestimate the global LCC. A potential reason for this is the complexity of the diverse change/no-change characteristics at the global extent and the fact that smaller, more subtle LCCs might not be well detected. These limitations could be addressed by taking advantage of ensemble learning approaches with a combination of multiple independent region/thematic-adapted LCC monitoring models and using the original Sentinel-2 (10 m) and Landsat 8 (30 m) in the future

    Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2018: Globe

    No full text
    Consolidated epoch 2018 from the Collection 3 of annual, global 100m land cover maps. Other available epochs: 2015 2016 2017 2019 Produced by the global component of the Copernicus Land Service, derived from PROBA-V satellite observations and ancillary datasets. The maps include a main discrete classification with 23 classes aligned with UN-FAO's Land Cover Classification System, a set of versatile cover fractions: percentage (%) of ground cover for the 10 main classes a forest type layer quality layers on input data density and on the confidence of the detected land cover chang

    Developing and applying a multi-purpose land cover validation dataset for Africa

    No full text
    The production of global land cover products has accelerated significantly over the past decade thanks to the availability of higher spatial and temporal resolution satellite data and increased computation capabilities. The quality of these products should be assessed according to internationally promoted requirements e.g., by the Committee on Earth Observation Systems-Working Group on Calibration and Validation (CEOS-WGCV) and updated accuracy should be provided with new releases (Stage-4 validation). Providing updated accuracies for the yearly maps would require considerable effort for collecting validation datasets. To save time and effort on data collection, validation datasets should be designed to suit multiple map assessments and should be easily adjustable for a timely validation of new releases of land cover products. This study introduces a validation dataset aimed to facilitate multi-purpose assessments and its applicability is demonstrated in three different assessments focusing on validating discrete and fractional land cover maps, map comparison and user-oriented map assessments. The validation dataset is generated primarily to validate the newly released 100m spatial resolution land cover product from the Copernicus Global Land Service (CGLS-LC100). The validation dataset includes 3617 sample sites in Africa based on stratified sampling. Each site corresponds to an area of 100m×100 m. Within site, reference land cover information was collected at 100 subpixels of 10m×10m allowing the land cover information to be suitable for different resolution and legends. Firstly, using this dataset, we validated both the discrete and fractional land cover layers of the CGLS-LC100 product. The CGLS-LC100 discrete map was found to have an overall accuracy of 74.6 ± 2.1% (at 95% confidence level) for the African continent. Fraction cover products were found to have mean absolute errors of 9.3, 8.8, 16.2, and 6.5% for trees, shrubs, herbaceous vegetation and bare ground, respectively. Secondly, for user-oriented map assessment, we assessed the accuracy of the CGLS-LC100 map from four user groups' perspectives (forest monitoring, crop monitoring, biodiversity and climate modelling). Overall accuracies for these perspectives vary between 73.7% ± 2.1% and 93.5% ± 0.9%, depending on the land cover classes of interest. Thirdly, for map comparison, we assessed the accuracy of the Globeland30-2010 map at 30m spatial resolution. Using the subpixel level validation data, we derived 15,252 sample pixels at 30m spatial resolution. Based on these sample pixels, the overall accuracy of the Globeland30-2010 map was found to be 66.6 ± 2.4% for Africa. The three assessments exemplify the applicability of multi-purpose validation datasets which are recommended to increase map validation efficiency and consistency. Assessments of subsequent yearly maps can be conducted by augmenting or updating the dataset with sample sites in identified change areas.JRC.D.6-Knowledge for Sustainable Development and Food Securit

    ESA WorldCover 10 m 2021 v200

    No full text
    ESA WorldCover 10 m 2021 v200 The European Space Agency (ESA) WorldCover 10 m 2021 product provides a global land cover map for 2021 at 10 m resolution based on Sentinel-1 and Sentinel-2 data. The WorldCover product comes with 11 land cover classes, aligned with UN-FAO's Land Cover Classification System, and has been generated in the framework of the ESA WorldCover project. The ESA WorldCover 10m 2021 v200 product updates the existing ESA WorldCover 10m 2020 v100 product to 2021 but is produced using an improved algorithm version (v200) compared to the 2020 map. Consequently, since the WorldCover maps for 2020 and 2021 were generated with different algorithm versions (v100 and v200, respectively), changes between the maps should be treated with caution, as they include both real changes in land cover and changes due to the algorithms used. The WorldCover 2021 v200 product is developed by a consortium lead by VITO Remote Sensing together with partners Brockmann Consult, Gamma Remote Sensing AG, IIASA and Wageningen Universit

    ESA WorldCover 10 m 2020 v100

    No full text
    ESA WorldCover 10 m 2020 v100 The European Space Agency (ESA) WorldCover 10 m 2020 product provides a global land cover map for 2020 at 10 m resolution based on Sentinel-1 and Sentinel-2 data. The WorldCover product comes with 11 land cover classes, aligned with UN-FAO's Land Cover Classification System, and has been generated in the framework of the ESA WorldCover project. The WorldCover product is developed by a consortium lead by VITO Remote Sensing together with partners Brockmann Consult, CS SI, Gamma Remote Sensing AG, IIASA and Wageningen Universit
    corecore