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Developing and applying a multi-purpose land cover validation dataset for Africa 12 

Abstract 13 

The production of global land cover products has accelerated significantly over the past decade thanks 14 

to the availability of higher spatial and temporal resolution satellite data and increased computation 15 

capabilities. The quality of these products should be assessed according to internationally promoted 16 

requirements e.g., by the Committee on Earth Observation Systems-Working Group on Calibration and 17 

Validation (CEOS-WGCV) and updated accuracy should be provided with new releases (Stage-4 18 

validation). Providing updated accuracies for the yearly maps would require considerable effort for 19 

collecting validation datasets. To save time and effort on data collection, validation datasets should be 20 

designed to suit multiple map assessments and should be easily adjustable for a timely validation of new 21 

releases of land cover products. This study introduces a validation dataset aimed to facilitate multi-22 

purpose assessments and its applicability is demonstrated in three different assessments focusing on 23 

validating discrete and fractional land cover maps, map comparison and user-oriented map assessments. 24 

The validation dataset is generated primarily to validate the newly released 100m spatial resolution land 25 

cover product from the Copernicus Global Land Service (CGLS-LC100). The validation dataset 26 

includes 3617 sample sites in Africa based on stratified sampling. Each site corresponds to an area of 27 

100m×100m. Within site, reference land cover information was collected at 100 subpixels of 10m×10m 28 

allowing the land cover information to be suitable for different resolution and legends. Firstly, using this 29 

dataset, we validated both the discrete and fractional land cover layers of the CGLS-LC100 product. 30 

The CGLS-LC100 discrete map was found to have an overall accuracy of 74.6+/-2.1% (at 95% 31 

confidence level) for the African continent. Fraction cover products were found to have mean absolute 32 

errors of 9.3, 8.8, 16.2, and 6.5% for trees, shrubs, herbaceous vegetation and bare ground, respectively. 33 

Secondly, for user-oriented map assessment, we assessed the accuracy of the CGLS-LC100 map from 34 

four user groups’ perspectives (forest monitoring, crop monitoring, biodiversity and climate modelling). 35 

Overall accuracies for these perspectives vary between 73.7% +/-2.1% and 93.5% ±0.9%, depending on 36 

the land cover classes of interest. Thirdly, for map comparison, we assessed the accuracy of the 37 

Globeland30-2010 map at 30m spatial resolution. Using the subpixel level validation data, we derived 38 

15252 sample pixels at 30m spatial resolution. Based on these sample pixels, the overall accuracy of the 39 

Globeland30-2010 map was found to be 66.6 ±2.4% for Africa. The three assessments exemplify the 40 

applicability of multi-purpose validation datasets which are recommended to increase map validation 41 

efficiency and consistency. Assessments of subsequent yearly maps can be conducted by augmenting or 42 

updating the dataset with sample sites in identified change areas. 43 

Keywords: Land cover validation, Validation data, Multi-purpose assessments, Discrete and fractional 44 

land cover, Map comparison and User specific accuracies.   45 
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1. Introduction 46 

Land cover mapping at continental and global scales provides valuable information on the earth’s 47 

surface and is used for many applications aiming to understand and to adapt to the changing environment 48 

(Verburg et al. 2011). As such, good quality land cover maps are required by multiple institutions, 49 

governments and researchers related to climate change, biodiversity and conservation, and zero-hunger 50 

efforts (Romijn et al. 2016).  51 

The first satellite-based global land cover map dates back to 1994 (DeFries and Townshend 1994). Over 52 

the past decades numerous global land cover maps were produced using medium resolution satellite data 53 

(Arino et al. 2007; Bartholomé and Belward 2005; Friedl et al. 2002; Land Cover CCI. 2014; Tateishi 54 

et al. 2011). Pioneering the productions of higher resolution land cover mapping at large scale, 55 

researchers have created global and continental scale land cover products using Landsat (Chen et al. 56 

2015; Gong et al. 2013; Hansen et al. 2013) and Sentinel-2 data (CCI Land Cover 2017a). Our 57 

understanding of the changing environment is further enhanced with the recent land cover change 58 

products namely annual LC-CCI land cover maps (CCI Land Cover 2017b), Global Surface Water 59 

Explorer (Pekel et al. 2016), Global Human Settlement Layers (Pesaresi et al. 2016) and Global Forest 60 

Change datasets (Hansen et al. 2013).  61 

Advancements in land cover mapping at global or continental scales are being made continuously thanks 62 

to open access high spatial and temporal resolution remote sensing data and increased processing 63 

capabilities such as cloud computing. This is evident in the acceleration of developments of new land 64 

cover products over the current decade (Herold et al. 2016) and in the emerging high resolution land 65 

cover products generated using cloud computing facilities such as the Google Earth Engine (Gorelick et 66 

al. 2017). Complementing the higher resolution (~30m) large scale land cover mapping (e.g., CCI Land 67 

Cover (2017a) and Chen et al. (2015)), Copernicus Global Land Service (CGLS) aims to provide an 68 

operational global land cover mapping by focusing on yearly mapping from 2015 onwards with flexible 69 

thematic detail. The first product was generated for Africa at 100m resolution and it includes discrete 70 

(fixed legend) and fractional (vegetation continuous field layers providing estimates of fractions of land 71 
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cover types: trees, shrubs, herbaceous vegetation and bare soil) maps (Copernicus Global Land Service 72 

2017).  73 

Although, the validation of global land cover products has become a common activity for assessing their 74 

quality and usability (Herold et al. 2016), validation activities should adjust to the emergence of new or 75 

subsequent products without much additional effort. Most global land cover validation datasets are 76 

collected via visual interpretation (Chen et al. 2015; Tsendbazar et al. 2015b; Xiong et al. 2017), a labour 77 

intensive task requiring efforts of multiple mapping and image interpretation experts (Defourny et al. 78 

2011; Mayaux et al. 2006; Scepan et al. 1999). To guarantee the independence from the training data 79 

and the consistency of the validation results (as well as to save time and effort), such datasets should be 80 

designed to be suitable for multiple map assessments and could be re-used, to provide timely quality 81 

assessments on the new and subsequent land cover products.  82 

However, most existing validation datasets were generated to validate a single land cover map and their 83 

characteristics such as sample site areas and thematic legends are not suitable to be used for validating 84 

multiple maps. For example, a validation dataset (with some 150 000 sample locations) for the 85 

Globeland30 map (Chen et al. 2015) is limited to assessing other maps having similar resolution as the 86 

Globeland30. Similarly, the validation dataset developed for the GlobCover 2009 map (Defourny et al. 87 

2011) is constrained to be used for assessing maps with medium resolution (~300m) (CCI Land Cover 88 

2017b). A recent review of metadata on global land cover validation datasets found that re-using a 89 

validation dataset to assess another map usually comes at a cost, namely loss of spatial and thematic 90 

detail (Tsendbazar et al. 2015b). This restricts the usage of validation datasets for purposes such as 91 

assessing fraction maps, map comparisons and map assessments from different users’ perspectives. For 92 

example, most validation datasets represent the reference land cover as discrete classes according to 93 

fixed legends. Therefore they do not record land cover fraction information (e.g., tree cover fractions). 94 

As such their utility for validating land cover maps is limited  (Tsendbazar et al. 2015b).  95 

The call for a validation dataset suitable for multiple map validation was initiated by an international 96 

community, i.e., the Global Observations of Forest and Land Dynamics (GOFC-GOLD) (Herold et al. 97 
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2009). GOFC-GOLD emphasizes the importance of inter-operability and comparability of global land 98 

cover maps to help map users select the most suitable maps for their needs (Herold et al. 2008). A 99 

statistical comparison of several land cover maps requires a validation dataset that has been acquired by 100 

transparent means and that is suitable for multiple map assessments in terms of spatial resolution and 101 

thematic legends. For example, the class “forest” can have different definitions  (e.g., >30% or >60% 102 

forest density)(Jung et al. 2006), thus the validation dataset used for comparison should be able to 103 

accommodate such differences. Therefore, GOFC-GOLD and the working group on calibration and 104 

validation of the Committee on Earth Observation Satellites (GEOS-WGCV) proposed a multi-purpose 105 

validation dataset (Herold et al. 2009) which was further detailed in Olofsson et al. (2012). For improved 106 

re-usability, the dataset was designed to be flexible in terms of sample selection, sample unit area and 107 

thematic detail (Olofsson et al. 2012). For example, the reference land cover in a sample unit area (5km 108 

× 5km) is generated from classifications of very high resolution (2m) images and this makes the dataset 109 

suitable for assessing maps with different resolutions up to 5km × 5km. Fractional coverage of land 110 

cover types within the sample unit area can also be estimated with this dataset. The initial sample 111 

comprised 500 sites and could be increased if required (Stehman et al. 2012). The dataset has been 112 

published by the United States Geological Survey (Pengra et al. 2015). However, thematically it only 113 

comprises four land cover categories, i.e., trees, water, bare, and other.  114 

Map users may require different thematic classes depending on the purpose of applications using land 115 

cover maps (Tsendbazar et al. 2016a). For instance, confusion between bare land and natural grassland 116 

may not be important for users who are only interested in cropland areas. The overall map accuracy of 117 

cropland/non-cropland areas would be different than the overall accuracy reported by the map producers 118 

that report confusion errors for all classes. To report map accuracy from different users’ perspective, a 119 

validation dataset needs to be compatible with multiple legends. Tsendbazar et al. (2016b) used a re-120 

interpreted version of the GlobeCover-2005 validation dataset for validating and comparing three global 121 

land cover maps for 2005 from different users’ perspective. Although this dataset’s thematic detail is 122 

compatible with multiple maps, it is only suitable for validating medium resolution (~300-500m) global 123 

land cover maps (Defourny et al. 2011). Pengra et al. (2015) and Tsendbazar et al. (2016b) showed that 124 
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more efforts are needed to create validation datasets that match different spatial and thematic detail as 125 

well as different users’ perspectives.  126 

Subsequent releases of land cover products should be provided with updated independent validation 127 

reports according to the Stage 4 validation requirements of the CEOS-WGCV (Herold et al. 2009). Most 128 

currently available global land cover products do not meet this requirement. Apart from the CCI-2015, 129 

which was validated using the GlobCover-2009 validation dataset (CCI Land Cover 2017b), none of the 130 

yearly CCI-LC land cover products has been validated. The same applies to the MODIS land cover maps 131 

for which only the accuracy of the 2005 map was assessed (Friedl et al. 2010). Validation of new land 132 

cover products would benefit from a validation dataset that is updated using less demanding efforts, 133 

such as re-interpreting and adding additional sample locations in identified change areas. Stehman et al. 134 

(2012) recommended using stratified sampling to facilitate sample augmentation.  135 

In this work, we aim (i) to develop a flexible validation dataset suitable for assessments of multiple land 136 

cover maps, and (ii) to illustrate its applicability for multiple-purposes in three different assessments 137 

namely validation of discrete and fractional land cover maps, map validations from user’s perspectives 138 

and validating a different resolution map for a comparison purpose. It builds on an independent 139 

validation activity of the CGLS Dynamic Land Cover product (CGLS-LC100) (Tsendbazar et al. 2017). 140 

The CGLS-LC100 is a part of a framework for operational implementation of yearly global land cover 141 

mapping. We describe the design and production of the CGLS-LC100 land cover validation data for 142 

Africa suitable for assessing land cover maps at 10-100m resolution. Applicability of the validation 143 

dataset for multiple purposes is demonstrated for three different assessments requiring different accuracy 144 

metrics, legends and resolutions. Firstly, we calculated different accuracy metrics appropriate for  145 

assessing the discrete versus cover fraction CGLS-LC100 maps of Africa for the reference year of 2015. 146 

Secondly, to compare with the CGLS-LC100 accuracy, we used the validation dataset to assess the 147 

accuracy of 30 m resolution Globeland30 2010 map for Africa. Lastly, we assessed the accuracy of the 148 

CGLS-LC100 from different users’ perspectives requiring varying legends. While the current study 149 

focuses on validation data at African continental scale, the dataset design can be expanded to global 150 

scale which can be used for assessing global land cover maps.  151 
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2. Methods and materials 152 

 153 

2.1. Validation data collection 154 

2.1.1. Sampling design 155 

A probability sampling scheme was used to allow design-based inference of map accuracies. The sample 156 

selection scheme had to be suitable for validating the CGLS-LC100 maps and other land cover maps. 157 

Therefore, appropriate choices for sample size, sample selection scheme and sample unit size (spatial 158 

support) were considered given constraints imposed by allowable error (Foody 2009; Olofsson et al. 159 

2012).  160 

Considering the efforts required to collect the validation dataset (expert training, interpretation and 161 

quality checking: see Section 2.1.2) a sample size of 2700 sites was considered feasible. Such sample 162 

size is similar or larger than those used for statistical assessments of large scale land cover maps 163 

(Bontemps et al. 2011; Mayaux et al. 2006; Tateishi et al. 2014).  164 

The criterion of statistical probability sampling with known and non-zero inclusion probabilities was 165 

followed. Due to its efficiency and ease of accommodating modifications such as an increase in sample 166 

size (Olofsson et al. 2012), we used stratified random sampling. We used a global stratification by 167 

Olofsson et al. (2012) that is independent from any land cover maps. This stratification is based on 168 

Köppen climate zones and human population density following the assumption that current land cover 169 

is influenced by climate as natural driver and human disturbances as anthropogenic driver (Olofsson et 170 

al. 2012). The stratification according to Olofsson et al. (2012), originally at 5km resolution, was 171 

resampled to 100m resolution for this study. For Africa there are 15 strata to which a water stratum was 172 

added (Figure 1).   173 

The sample allocation process focused on strata in which some land cover classes that are more likely 174 

to be misclassified (Olofsson et al. 2012). Since, the Sahel and dry savannah’s heterogeneous landscapes 175 

in Africa are known to have lower map accuracies (Tsendbazar et al. 2015a), more sample sites were 176 

allocated to these heterogeneous areas and to the populated strata (Figure1). The sample sizes per 177 

stratum are listed in Table S1(Supplementary Materials). At each sample site location, reference land 178 
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cover of an area of 100m × 100m was identified. This support size coincides with the pixel size of the 179 

Proba-V satellite data used to generate the CGLS-LC100 land cover products. 180 

To increase the sample representation in rare classes such as wetland and urban, an additional set of 181 

sample sites was collected. For this, the minimum required sample size per class was set to 250. If the 182 

sample size for a specific mapped class was smaller than 250, additional sample sites were collected to 183 

meet the requirement. This additional collection mostly focused on urban, wetland vegetation, water and 184 

shrubs areas based on the CGLS-LC100 discrete land cover map. Therefore, the augmented sample sites 185 

were selected independently of the initial stratification of Olofsson et al. (2012). For each stratum, 186 

sample sites were randomly selected as shown in Figure 1. The obtained sample size amounted to 3617 187 

sites including the initial 2700 sample sites.  188 

 189 

Figure 1: Spatial distribution of all validation sample sites and the stratification by Olofsson et al 2012: ‘p’ 190 

before the strata names denote populated part of climate zone. 191 

2.1.2. Response design 192 

To allow multi-purpose assessments of land cover maps, the spatial and thematic representations of the 193 

validation dataset are designed to be compatible for maps with different resolutions and legends. For 194 

this, similar to the training data collection used for the CGLS-LC100 product (Lesiv et al. 2016a), each 195 

sample site (100m × 100m) was divided into 10×10 small blocks (10m × 10m) and reference land cover 196 
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was collected at the subpixel level. This makes the validation dataset compatible for assessing maps 197 

with 10-100m resolutions. For the thematic representation, we labelled the land cover in terms of generic 198 

elements dominating the 10m × 10m subpixels. Land cover elements include trees (different leaf and 199 

phenology types), shrubs, grass, crops, built-up areas, bare area, water body, snow &ice and regularly 200 

flooded herbaceous area (wetlands). The land cover elements were defined according to the United 201 

Nations Land Cover Classification System (UN-LCCS) (Di Gregorio 2005). This allows the validation 202 

dataset to be thematically compatible for multiple maps by using different combinations of the land 203 

cover elements based on legend definition requirements of multiple maps.  204 

To collect reference land cover data for validation, we have developed a dedicated web-interface through 205 

the Geo-Wiki platform (Fritz et al. 2011). The interface provides access to different remote sensing data 206 

and allows labelling land cover (Figure 2). The data sources for interpretation include Google and Bing 207 

maps as well as Sentinel-2 (Level1C single-date) images with acquisition dates around 2015. Historic 208 

time series of NDVI profiles based on MODIS, Landsat and Proba-V data were used for plant phenology 209 

identification (Figure 2).  210 

211 
Figure 2: Screen shot of Geo-Wiki based interface for land cover validation 212 
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An example of labelling the land cover in a sample site is provided in Figure 3.  213 

 214 

Figure 3: A screenshot of an example sample interpretation (green – trees, orange – shrubs, yellow – 215 

grassland) 216 

Land cover at each site was visually interpreted by a single expert. In total there were six experts who 217 

contributed remotely for different regions in Africa. All experts have experience in satellite based land 218 

cover analysis and image interpretation. The GOFC-GOLD regional network was used for recruiting 219 

some of the experts. Table 1 provides a list of the regional experts who contributed to data collection. 220 

On average, one expert interpreted 80-100 sample sites per day. Overall,  validation data collection and 221 

quality control took three months.  The experts’ efforts were financially compensated depending on the 222 

work load. 223 

 Table 1: Selected regional experts for sample interpretation 224 

  Name Country Region Affiliation 

1 Andre Mazinga DRC 
Central and 

Western Africa  
 OSFAC, DRC 

2 Ifo Suspence 
Republic of 

Congo 
Central Africa  

Marien Ngouabi University, Brazzaville, 

République du Congo. 

3 Elias Buzayane Ethiopia Eastern Africa HoLiN Training and Consultancy Services PLC 

4 Natasha Ribeiro Mozambique 
Southern 

Africa 

Universidade Eduardo Mondlane and 

MIOMBO and GOFC-GOLD network 

5 Matthias Herkt Germany 
Southern and 

Eastern Africa 

Institute of Experimental Ecology, University 

of Ulm, Germany 

6 
Emmanuel Amoah 

Boakye 
Ghana Western Africa WASCAL, Accra, Ghana 

 225 

Different quality control measures were applied to obtain a reliable and good quality reference dataset 226 

for validation. Firstly, in addition to a tutorial on land cover interpretation, a training workshop was 227 

organized for the global land regional land cover mapping experts in January 2017 at IIASA, Laxenburg, 228 

Austria. The aim of the workshop was to reduce interpretation discrepancies among the experts. The 229 
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experts were asked to interpret the same 30 sample sites (100m x 100m) and feedback on any 230 

discrepancy was provided upon examination by global land cover mapping experts. The global land 231 

cover mapping experts were independent from the CGLS-LC100 product generation. Secondly, 232 

depending on the available sources of information (e.g., high resolution images and NDVI profiles) and 233 

complexity of landscapes (e.g., small holder cultivation areas), the confidence in the interpretation can 234 

be different. Therefore, we recorded the interpretation confidence levels (i.e., unsure, bit sure, quite sure, 235 

sure). Three percent of the sample sites were tagged as “unsure” or “bit sure”. Lastly, all the 236 

interpretations including these unsure interpretations were checked by global land cover mapping 237 

experts and feedback on each interpretation was provided to the experts. The regional experts either 238 

rebutted the feedback or corrected their interpretations where necessary.  239 

2.2. Land cover products 240 

To demonstrate applicability of the validation dataset for multiple applications, we selected two land 241 

cover maps at different spatial resolutions and different legends: (1) the CGLS-LC100 V1.0 at 100m 242 

resolution provided for the 2015 reference year over Africa (Buchhorn et al. 2017); (2) the Globeland30 243 

2010 map (Chen et al. 2015). 244 

The CGLS-LC100 V1.0 at 100m resolution product, provided for the 2015 reference year over Africa 245 

(Buchhorn et al. 2017), is a new product in the CGLS portfolio. The CGLS-LC100 is based on the Proba-246 

V 100m data archive (Dierckx et al. 2014), a high quality land cover training dataset (Lesiv et al. 2016a) 247 

and several ancillary datasets. More description of the map generation is detailed in Buchhorn et al. 248 

(2017). Apart from a discrete land cover type map, the product includes four vegetation continuous field 249 

layers providing estimates of fractions (0 - 100%) for the land cover types: trees, shrub, herbaceous 250 

vegetation and bare ground.  251 

Table 2 lists the land cover classes and their definitions (Lesiv et al. 2016b).   252 
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Table 2: Land cover classes accounted for in CGLS dynamic land cover map  253 

Code  Land cover classes Definitions according to UN LCCS 

11 Closed Forest 

Lands dominated by woody plants with a percent cover >70% and height exceeding 

5 meters. Exception: a woody plant with a clear physiognomic aspect of trees can 

be classified as trees even if the height is lower than 5 m but more than 3 m. 

Depending on the phenology and leaf type, forest can be divided into evergreen, 

deciduous, needleleaf and broadleaf forests.  

12 Open Forest 

Lands dominated by woody plants with a percent cover 15-70% and height 

exceeding 5 meters. Exception: a woody plant with a clear physiognomic aspect of 

trees can be classified as trees even if the height is lower than 5 m but more than 3 

m. Depending on the phenology and leaf type, forest can be divided into evergreen, 

deciduous, needleleaf and broadleaf forests. 

20 Shrubs 

These are woody perennial plants with persistent and woody stems and without any 

defined main stem being less than 5 m tall. The shrub foliage can be either 

evergreen or deciduous. 

30 
Herbaceous 

vegetation 

Plants without persistent stem or shoots above ground and lacking definite firm 

structure. Tree and shrub cover is less than 10%. 

40 Cropland 

Lands covered with temporary crops followed by harvest and a bare soil period 

(e.g., single and multiple cropping systems). Note that perennial woody crops will 

be classified as the appropriate forest or shrub land cover type. 

50 Urban/built up Land covered by buildings and other man-made structures 

60 
Bare/sparse 

vegetation 

Lands with exposed soil, sand, or rocks and never has more than 10% vegetated 

cover during any time of the year 

70 Snow and Ice Lands under snow or ice cover throughout the year. 

80 Open water Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies. 

90 
Wetland herbaceous 

vegetation 

Lands that have free water at or on the surface for at least the major part of the 

growing season. Wetland vegetation include open wetlands, permanent and 

seasonally flooded wetland herbaceous vegetation. Note that wetland woody 

vegetation are classified as the appropriate forest or shrub land cover type. 

 254 

We also assessed the Globeland30 map (Chen et al. 2015) for comparison. The Globeland30 project of 255 

China’s Ministry of Science and Technology produced global land cover maps for the year 2000 and 256 

2010. The maps were produced at 30m resolution using Landsat TM and ETM+ and the Chinese 257 

Environmental Disaster Alleviation Satellite (HJ-1) data. We used the 2010 map for Africa. This map 258 

has ten land cover classes of which eight occur in Africa (cultivated land, forest, grassland, shrubland, 259 

wetland, water bodies, artificial surfaces and bare land) (Globeland30 2016). The overall map accuracy 260 

has been reported to be 79.26% at global level (Chen et al. 2015) but no accuracy information is available 261 

for Africa.  262 

2.3. Validation of discrete and fractional land cover map  263 

To assess the discrete CGLS-LC100 map, the land cover elements of 10 × 10 subpixels were summed 264 

for each sample site to derive fractions of land cover types per validation site (e.g. 70% trees and 30% 265 
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grass = = 70 subpixels trees and 30 subpixels grass). This information was then translated to the CGLS-266 

LC100 discrete legend using the UN-LCCS  as a basis. For homogeneous sample sites, land cover 267 

fractions were directly converted to land cover classes (e.g., 100% water proportion corresponds to water 268 

body class). Approximately 37% of the sample sites were homogeneous (100% covered by a single land 269 

cover type). In heterogeneous sample sites where conditions can concurrently meet definitions of 270 

multiple land cover types, a priority rule was applied, similar to the CGLS-LC100 training data 271 

translation approach (Lesiv et al. 2016a). In such cases, the preferential order was open water, urban, 272 

cropland, closed forest, open forest, shrubs, wetland, herbaceous vegetation and bare/sparse vegetation, 273 

respectively. In the legend translation, +/- 5% deviations from the legend definition thresholds were 274 

allowed. This aimed to consider the geolocation error of Google and Bing Map images which were used 275 

for land cover interpretation.  276 

To estimate the accuracy of the land cover maps, we accounted for unequal inclusion probabilities 277 

between different strata because sample sites were not allocated proportionally to the strata areas 278 

(Olofsson et al. 2012; Wickham et al. 2010). Based on Pengra et al. (2015), the inclusion probability for 279 

stratum h is πh=kh/Kh, where kh is number of sample sites in stratum h and Kh is the population size for 280 

stratum h (see Table S1 for inclusion probabilities per stratum). Number of sites is based on the 100m 281 

× 100m units. Inclusion probability for the additional sample sites were calculated based on the 282 

population of possible sample sites within the rare classes of the CGLS-LC100 map. The estimation 283 

weight, the inverse of inclusion probability (𝜔h=1/ πh ), was then calculated and used to construct the 284 

confusion matrix accounting for unequal sample inclusion probabilities following the methods described 285 

in Stehman et al. (2003) and Wickham et al. (2010). We then estimated the overall and class specific 286 

accuracies and their confidence intervals (at 95% confidence level) following Stehman (2014) which 287 

specifically addresses estimating map accuracies when the sampling strata are different from the map 288 

classes. Thus, by appending three rare class strata to the original stratification, 19 strata were used in the 289 

calculations.  290 

Validation data does not contain information on temporary waterbody areas because of limited 291 

availability on multiple high resolution images per year for each sample location. Thus, we merged the 292 
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mapped classes of permanent and temporary waterbody for the accuracy assessment. Owing to the 293 

limited sample size for combinations of forest density (closed and open forest) and forest phenology,  294 

the accuracy estimation focused on generic classes without taking specific forest phenology into 295 

account. 296 

To assess the fraction cover layers, fraction information of the land cover types in the validation dataset 297 

was directly used. For each cover fraction layer, the mean absolute error (MAE) and root mean square 298 

error (RMSE) were calculated (Foody 1996; Pengra et al. 2015).  299 

𝑅𝑀𝑆𝐸𝑐 = √
∑ 𝜔𝑖(𝑝𝑖−𝑣𝑖)

2𝑛
𝑖=1

∑ 𝜔𝑖
𝑛
𝑖=1

                                                    (Eq.1) 300 

where RMSEc is the root mean squared error of class c, vi is the reference fraction of class c (in percent), 301 

pi is the mapped fraction of class c, 𝜔𝑖 represents the estimation weight for the sample site and n is the 302 

total number of sample sites. 303 

𝑀𝐴𝐸𝑐 =
∑ 𝜔𝑖|𝑝𝑖−𝑣𝑖|
𝑛
𝑖=1

∑ 𝜔𝑖
𝑛
𝑖=1

                                                               (Eq.2) 304 

where MAEc is the mean absolute error of class c.  305 

2.4. Accuracy comparison with other datasets at different spatial resolution 306 

For map comparison, the validation dataset should be suitable for the maps being compared in terms of 307 

thematic legend and spatial resolution. The CGLS validation dataset can be used to assess land cover 308 

maps with 10-100m resolutions. Information on generic land cover elements of this dataset also makes 309 

it suitable for maps with different legends. To compare the accuracy of the CGLS-LC100 discrete map, 310 

the validation dataset was used to assess the accuracy of the Globeland30-2010 map (Chen et al. 2015). 311 

This map was selected because its pixel size is smaller than the spatial support of the CGLS-LC100 312 

validation dataset. 313 

To make the validation dataset compatible with 30m resolution Globeland30 map, we extracted pixel 314 

values of the Globeland30 map over each subpixel area (10×10m) of the validation dataset. Using the 315 

subpixel centroid locations, we selected Globeland30 pixels that spatially overlap with the subpixels of 316 
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the validation dataset (at least nine subpixel centre points of the validation dataset). The reference land 317 

covers over nine subpixels were aggregated to derive reference land cover for 30m pixels. For 318 

homogeneous areas, the land cover elements were directly converted to land cover classes. In 319 

heterogeneous areas that can have multiple possible land cover types, we used the dominant land cover 320 

type as reference land cover. Sample pixels which did not have a clear dominance (e.g., four sub-pixels 321 

of trees, four sub-pixels of shrubs and one sub-pixel of water), totalling to 1037 cases, were excluded 322 

from the assessment. A total of 15252 sample pixels were available at 30m resolution.  323 

Next, the Globeland30 map was evaluated using a stratified one-stage cluster approach (Pengra et al. 324 

2015) because multiple 30m sample pixels within the 100m × 100m sites were used for the assessment. 325 

Calculation of inclusion probabilities, accuracy estimates and confidence intervals followed the 326 

stratified one-stage cluster approach described in Pengra et al. (2015) and Stehman et al. (2003). 327 

2.5. Map validation from different users’ perspectives 328 

We assessed the accuracy of the CGLS-LC100 product from the perspective of four user groups (forest 329 

monitoring, crop monitoring, biodiversity and climate modelling). User requirements in terms of map 330 

accuracy, spatial and thematic details were defined for the CGLS-LC100 product by the European 331 

Commission’s Copernicus Global Land Monitoring program (Lesiv et al. 2016b). We adopted these 332 

requirement specifications and derived lists of land cover classes that were deemed to be of interest to 333 

the user groups.  334 

Forest monitoring 335 

Researchers and analysts engaged in forest monitoring need information on forest land cover classes. 336 

These include closed forests, mixed forests or mosaics of forests with other land cover types, for 337 

example, landscapes that are common in Savannah regions in Africa.  338 

The current legend of the CGLS-LC100 discrete map includes closed forests (>70% tree cover) and 339 

open forests (15-70% tree cover) classes. A tree cover mosaic class (30 – 70% tree cover) is also widely 340 

used in forest monitoring applications (e.g., TREES3 dataset) (Achard et al. 2002; Mayaux et al. 2013), 341 

We used the tree cover fraction layer of the CGLS-LC100 product to separate the open forests class in 342 
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the discrete map into two different classes (tree cover mosaic (30-70% tree cover) and open tree cover 343 

mosaic (15-30% tree cover)). Figure 4a depicts a map with seven forest-related classes differing in terms 344 

of phenology and tree cover densities based on the CGLS-LC100 discrete LC map and tree cover 345 

fraction layer.  346 

A similar procedure as specified in Section 2.3, was followed to translate the reference data and to assess 347 

the accuracy.  348 

Crop monitoring 349 

Cropland/non-cropland masks are useful for crop monitoring applications. We created a cropland mask 350 

based on the ‘cropland class’ of the CGLS-LC100 discrete map and assessed its accuracy from crop 351 

monitoring perspective (Figure 4b). Area estimates of this class were also calculated for the whole of 352 

Africa.   353 
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a. b. 

  
c. d. 

  
Figure 4. User specific maps based on the CGLS-LC100 products for (a) forest monitoring, (b) crop 354 

monitoring, (c) biodiversity and (d) climate modelling  355 

Biodiversity 356 

Land cover maps provide base information for many studies involving biodiversity and conservation 357 

(Tuanmu and Jetz 2014). In addition to land cover classes referred to in Section 2.3, we considered 358 

different forest type classes as useful classes for biodiversity assessments. Similar to Section 2.3, the 359 

temporary waterbody class was merged with the permanent waterbody class. Figure 4c depicts the 360 

CGLS-LC100 map with eleven classes that were deemed useful for biodiversity assessments.  361 

Climate modelling 362 
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According to the user requirements of the CGLS-LC100 product, the savannah class that is similar to 363 

the open forest class is not distinctive for climate modelling purposes (Lesiv et al. 2016b). Thus, open 364 

forest was merged with closed forest while only evergreen and deciduous forest types were separated 365 

(Figure 4d). Similar to Section 2.3, the temporary waterbody class was merged with the permanent 366 

waterbody class. 367 

3. Results 368 

3.1. Validation of discrete and fractional land cover maps  369 

The CGLS-LC100 V1 product (the discrete map and four fraction layers) was assessed using the 370 

validation dataset described in Section 2.1. The count-based confusion matrix before correcting for un-371 

equal inclusion probabilities is provided in Table S2 (Supplementary Materials).  372 

The estimated confusion matrix incorporating unequal inclusion probabilities is shown in Table 3. 373 

Overall map accuracy of the CGLS-LC100 discrete map amounts to 74.6% ±2.1% (confidence interval 374 

at 95% confidence level)(Table 3). 375 

Table 3: Confusion matrix for the discrete CGLS-LC100 map for Africa, expressed in percentages. 376 
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Closed forest 11.89 1.96 0.24 0.13 0.13     0.03 0.15 730   14.5     81.8 3.6 
Open forest 1.68 11.04 1.49 1.54 1.19   0.02 0.02 0.58 584      17.6  62.9 4.3 

Shrubs 0.07 2.19 5.90 0.92 0.43 0.03 0.25 0.00 0.09 253        9.9  59.7 9.0 
Herbaceous veg. 0.23 2.07 2.00 10.92 0.87 0.04 0.70 0.07 0.25 517      17.1  63.7 6.3 

Croplands 0.05 1.18 0.59 1.39 5.48 0.00 0.07 0.35 0.10 412        9.2  59.4 6.5 
Urban    0.03 0.00 0.03 0.00 0.17 0.00 0.00   250        0.2  70.4 5.7 

Bare/Sparse veg.   0.02 0.39 1.27 0.15   28.29 0.28   309      30.4  93.1 3.2 
Water    0.01 0.01 0.01 0.01   0.00 0.87 0.03 312        0.9  93.3 2.8 

Wetland   0.00 0.00 0.00 0.00 0.00   0.01 0.07 250        0.1  78.0 5.1 
Sample count  695 645 292 554 383 180 284 343 241 3617       

Total  13.9 18.5 10.6 16.2 8.3 0.3 29.3 1.6 1.3   100     
Producer's accuracy 85.4 59.7 55.6 67.4 66.3 68.8 96.4 53.2 5.3     74.6 2.1 
Confidence interval 

+/- 3.4 4.9 8.4 5.8 6.2 29.4 2.5 20.0 1.7         
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The closed forest and bare/sparse vegetation classes are mapped with relatively high accuracy while the 377 

accuracies for open forest, herbaceous vegetation and cropland classes are relatively low. Among the 378 

natural vegetation classes, shrubs have the lowest accuracy. The producer’s accuracy of the wetland 379 

class is particularly low. Substantial wetland areas are omitted in the CGLS-LC100 map since they are 380 

confused with the open forest and herbaceous vegetation classes (Table 3).  381 

Table 4 lists the MAE and RMSE for the fraction cover maps.  382 

Table 4. Accuracy of the cover fraction layers expressed in percentages. 383 

 
Mean absolute error 

(MAE) 

Root mean square error 

(RMSE) 

Tree fraction 9.32 16.75 

Shrub fraction 8.83 15.09 

Herbaceous vegetation 

fraction 

16.21 24.84 

Bare fraction 6.56 14.85 

 384 

The bare area fraction map has the lowest error with a MAE of 6.5% and a RMSE of 14.8% while the 385 

herbaceous vegetation fraction has the highest error with a MAE of 16.2% and a RMSE of 24.8%.  386 

Upon visual inspection, the deviation from the validation dataset tends to be higher in regions bordering 387 

The Sahara desert, The Congo basin and The Horn of Africa.  388 

3.2. Accuracy comparison with other datasets at different spatial resolution 389 

Based on the 15 252 sample pixels, the overall accuracy of the Globeland30 2010 for Africa was 390 

assessed at 66.6% ±2.4 % (at 95% confidence level) (Table 5).   391 

  392 
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Table 5: Confusion matrix for the Globeland30 2010 for Africa, expressed in percentages 393 
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Cultivated areas 3.84 0.39 1.45 0.24 0.07 0.09 0.04 0.11 1408 6.23 61.6 6.6 

Forest 0.61 13.20 2.33 0.86 0.31 0.02 0.00 0.02 3491 17.35 76.1 3.2 

Grassland 2.22 5.01 16.68 5.16 0.62 0.05 0.05 2.83 4567 32.62 51.1 3.8 

Shrubland 0.31 1.05 2.97 1.48 0.26 0.02 0.00 1.3 1114 7.40 20.0 5.8 

Wetland 0.008 0.913 0.25 0.009 0.39 0.155 0 0.025 940 1.75 22.5 9.6 

Water bodies 0.004 0.08 0.001 0.00 0.04 1.39 0 0.02 1673 1.54 90.3 5.5 

Artificial surfaces 0.024 0.10 0.12 0.00 0 0.001 0.17 0.251 712 0.66 25.9 12.9 

Bareland 0.16 0.006 2.12 0.067 0.039 0.59 0.06 29.41 1347 32.45 90.6 4.4 

Sample count  1453 4040 3693 942 1212 1739 534 1639 15252      

Total  7.18 20.75 25.91 7.83 1.73 2.31 0.32 33.96   100    

Producer's accuracy 53.4 63.6 64.4 18.9 22.8 60.2 53.1 86.6     66.6 2.4 

Confidence interval +/- 6.5 3.5 4.5 6.1 10.8 24.9 23.5 4         

 394 

Bareland has relatively high class accuracy, followed by the forest class. The forest class is greatly 395 

confused with the grassland class and Globeland30 tends to map substantial forested areas as grasslands 396 

(Table 5). Cultivated areas and shrubland are also under-estimated due to over-estimation of grasslands. 397 

The shrubland and wetland class have the lowest accuracies compared to other classes.  398 

The count-based confusion matrix for the Globeland30 map can be found in Table S3 (Supplementary 399 

Materials). 400 

3.3.  Map validation from different users’ perspectives 401 

The accuracy of the CGLS-LC100 map from different user’s perspective is summarized in Table 6. The 402 

detailed confusion matrices are provided in Table S4-S7.  403 

Overall map accuracy for forest monitoring was estimated at 81.3% ± 1.4% (Table 6). The confusion 404 

matrix and class specific accuracies show that closed forests types (evergreen broadleaf and deciduous 405 

broadleaf) are mapped with higher accuracy (Table S4). Closed evergreen broadleaf forest is mapped 406 



21 
 

with good accuracy (>90%). The accuracy of the tree cover mosaic and the open tree cover mosaic 407 

classes are low.  408 

The overall accuracy of the cropland mask was found to be  93.5 ±0.9% % (Table 6). The class specific 409 

accuracies of the cropland class are 59.4 % and 66.3% for user’s and producer’s accuracy respectively 410 

(Table S5).  411 

Table 6 : A summary of the considered land cover classes and their accuracies for the users 412 

User groups User specific maps and remarks Overall accuracy (area adjusted) / Estimate with 

95% confidence intervals 

General user (producer) Discrete land cover map with 9 general 

classes 

74.6%  ±2.1% 

Forest monitoring A map with 6 forest related classes 

(Figure 4a)  

81.3% ± 1.4% 

Crop monitoring Cropland and non-cropland mask 

(Figure 4b) 

 93.5 ±0.9%  

Cropland class: 

User’s accuracy: 59.4 ±6.5 % 

Producer’s accuracy: 66.3 ±6.2% 

Biodiversity Discrete land cover map with 11 classes 

(Figure 4c) 

73.7 % ± 2.1% 

Climate Modelling  Discrete land cover map with 9 classes 

(Figure 4d) 

Fractional land cover maps for trees, 

shrubs, herbaceous vegetation and bare 

areas 

77.3%  ± 2.1% 

 

MAE: 9, 8.8, 16, and 6.5%, respectively 

RMSE: 16.7, 15, 24.8,  and 14.8% , respectively 

 413 

The overall accuracy was assessed at 73.7 % ± 2.1% for biodiversity related use. The class accuracies 414 

and the confusion matrix are provided in Table S6. The class accuracies are similar to those presented 415 

in Table 3. The producer’s accuracy of the open forest, evergreen broadleaf class is low since this class 416 

is mostly confused with closed forest evergreen broadleaf and open forest deciduous broadleaf classes.  417 

For climate modelling users, the map overall accuracy was determined to be 77.3%  ± 2.1%  (Table 6). 418 

The class-specific accuracies and the confusion matrix can be found in Table S7. For the evergreen 419 

broadleaf forest class, the user’s and producer’s accuracies are 95% and 89.6% respectively. This class 420 

appears to be slightly under-represented. The deciduous broadleaf forest is slightly over-represented 421 

with users and producer’s accuracy of 72.9% and 74% respectively. In addition to the accuracy of the 422 

discrete map from the climate modelling perspective, the accuracy of the cover fraction layers provided 423 

in Table 6 can be important as climate modellers are often interested in land cover information related 424 
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to plant functional types and fraction information on the main land cover types are very useful towards 425 

this.  426 

4. Discussion 427 

4.1. The multi-purpose validation dataset development and use 428 

We designed and developed a protocol and validation dataset for independent and multi-purpose 429 

assessments of land cover products, and we applied it to different land cover maps (discrete and 430 

fractional) of Africa. Particularly, the dataset can address multi-purpose assessments of land cover maps 431 

namely (1) validating discrete and fractional land cover maps, (2) map comparability, (3) user oriented 432 

accuracy reporting, and (4) updated validation of subsequent land products and cost effectiveness for 433 

data collections (Defourny et al. 2011; Herold et al. 2008; Mayaux et al. 2006; Tsendbazar et al. 2016b). 434 

The results obtained in this study exemplify the first three purposes mentioned above. The last purpose, 435 

updated validation of subsequent land products was not specifically demonstrated in this study. 436 

However, the current design of the dataset should be suitable for this purpose as explained in this section. 437 

Recording the reference land cover information at 10×10m sub-pixel level facilitated the following: 438 

(i) To extract class fraction information within the sample site areas;  439 

(ii) To collect information on the land cover elements such as trees and buildings to be used for 440 

different legends; and  441 

(iii) To validate land cover maps at finer resolution (e.g. at Sentinel-2 and Landsat scale) 442 

These characteristics make this dataset suitable for multiple map validations requiring different legends, 443 

resolutions and requiring different accuracy metrics.  444 

A design of multi-objective accuracy assessment was previously introduced for National Land Cover 445 

Data of the United States of America (Stehman et al. 2008). This design addresses different aims of 446 

accuracy assessments such as class-specific accuracies, land cover proportion accuracies and net change 447 

detection accuracy. This design is limited to one map with a fixed legend and resolution and it is for the 448 

extent of the United States of America. The CGLS validation dataset is produced for the African 449 

continent and the proposed approach can be expanded to global scale applications thanks to the global 450 
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stratification derived from Köppen climate zones and population density (Olofsson et al. 2012). The 451 

current setup for data collection in the African continent (Section 2.1) can be replicated to other 452 

continents to collect validation dataset at global scale. If the similar numbers of sample sites were 453 

collected for the five other continents, the total sample size would be larger than 20 000. A stratification 454 

independent from the target land cover maps allows collecting the validation data while the target map 455 

is being produced, thus reducing the lag between map production and its accuracy assessment. 456 

Regardless of the stratification chosen, the accuracy estimates will be unbiased for the true accuracy of 457 

each map. However, the precision of the accuracy estimates computed from a stratification independent 458 

of the target map will be lower than if that map itself would be used for stratification.   459 

Thanks to the flexibility of the stratified sampling, the number of sample sites could also be increased 460 

if required (Stehman et al. 2012). Increasingly, this characteristic is important to provide timely and 461 

updated validation of subsequent land cover products following the requirements of the CEOS-WGCV 462 

State 4 validation. For subsequent maps, temporary sets of sample sites can be added to the original 463 

(permanent) sample to better represent modified or change recorded areas. A potential strategy would 464 

be to re-interpret only part of the permanent sample sites rather than all of them assuming no changes 465 

occurred in the sites not re-interpreted. The statistical implications of these adjustments need to be 466 

further addressed.  467 

4.2. Validation of the discrete and fractional land cover maps  468 

We assessed the accuracy of the CGLS-LC100 discrete and fractional land cover maps using the 469 

validation dataset described in Section 2.1. The overall accuracy of the discrete map was found to be 470 

74.6% ±2.1%. This overall accuracy is comparable with the reported accuracy for the CCI-LC-2015 471 

map at global scale (75.3% using only homogeneous sample sites) (Land Cover CCI. 2017). At the 472 

African continental scale, Tsendbazar et al. (2015a) found overall correspondences of 50-63% for four 473 

global land cover maps (GlobCover 2009, CCI-LC 2010, MODIS-2010 and Globeland 2010). Similarly, 474 

the overall accuracy of the Globeland30-2010 map obtained in the current study was assessed at 66.6 475 

±2.4% for Africa (Table 4). These results suggest that the CGLS-LC100 discrete map has higher overall 476 
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accuracy compared to Globeland30 map (Table 5) and other land cover maps for Africa (Tsendbazar et 477 

al. 2015a). 478 

Closed forest and bare/sparse vegetation classes have higher class specific accuracies followed by the 479 

open forest, herbaceous vegetation and cropland classes (Table 3). Among the natural vegetation classes, 480 

shrubs are mapped with the lowest accuracies owing to high confusion with open-forest and herbaceous 481 

vegetation classes. Confusion between open forests, herbaceous vegetation and shrubs is a known 482 

problem for land cover mapping in savannah ecosystems where different vegetation layers (woody and 483 

herbaceous vegetation) co-exist (Huttich et al. 2011; Jung et al. 2006). The CGLS-LC100 map slightly 484 

over-represents the bare/sparse vegetation class at the cost of herbaceous and shrubs areas, particularly 485 

in border regions of the Sahara and Namib deserts (Table 3). The cropland class is confused with open 486 

forest and herbaceous vegetation (Table 3). This can be attributed to the difficulty of separating cropland 487 

from herbaceous vegetation, and small-scale cultivation in heterogeneous landscapes (Xiong et al. 488 

2017).  489 

The producer’s accuracy of water and wetland classes are low, although 85% and 81% of the 490 

corresponding validation sites showed agreement in the count-based confusion matrix (Table S2). The 491 

confusion was mostly with herbaceous vegetation, croplands, open forest and bare sparse vegetation. 492 

The very low producer’s accuracy of the wetland class indicates omission of wetland areas in the CGLS-493 

LC100 map. The main wetland regions such as Okavango Delta in Botswana, and the Sudd in South 494 

Sudan are under-represented in this map. Therefore, further improvements are needed particularly for 495 

mapping the wetland and shrubs classes.  496 

Among the land cover fraction maps, bare area has the lowest errors (MAE 6.5% and RMSE of 14.8%), 497 

while, herbaceous vegetation has the highest errors. This can be attributed to the difficulty of separating 498 

herbaceous vegetation from other land cover types. This is confirmed by Table 3 where the herbaceous 499 

vegetation class is mostly confused with other classes. For the tree cover fraction map, there is no direct 500 

comparison available for Africa. However, compared to reported errors in other regions, the tree cover 501 

fraction of the CGLS-LC100 has similar or slightly lower errors (MAE 9.3% and RMSE 16.7%). For 502 
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example, in South-America, the Landsat based tree cover 2010 product by Hansen et al. (2013) was 503 

found to have a MAE of 9.39% (Pengra et al. 2015). A Landsat based rescaled version of the MODIS 504 

Vegetation Continuous Field percent tree cover product was reported to have 17% RMSE when 505 

compared against LiDAR measurements of four regions in North America (Sexton et al. 2013).  506 

In contrast to discrete land cover maps whose accuracies are often reported using overall and class 507 

accuracies calculated using confusion matrices (Mayaux et al. 2006; Olofsson et al. 2014), cover fraction 508 

maps (e.g., trees, shrubs and herbaceous vegetation) are assessed in terms of the deviation from the 509 

reference fraction commonly represented by mean error, MAE and RMSE. Since most validation 510 

datasets represent the reference land cover as discrete classes (Tsendbazar et al. 2015b), these datasets 511 

cannot be used for assessing cover fraction layers unless the cover fraction layers are hardened (applying 512 

a threshold to create discrete classes). Recording reference land cover at higher resolution (e.g., 10m) 513 

allowed estimating fraction of main land cover types, thus making this validation dataset suitable for 514 

assessing cover fraction layers. This way of collecting reference information could complement 515 

substantially the validation datasets created by classification of very high resolution images (Pengra et 516 

al. 2015) and LiDAR based measurements in limited locations (Sexton et al. 2013) referred in the 517 

previous paragraph. In addition to the four land cover types assessed in this study, other thematic cover 518 

fraction layers could also be assessed.  519 

4.3. Accuracy comparison with other datasets at different spatial resolution 520 

We also assessed the 30m resolution Globeland30 2010 map for Africa using our validation dataset. 521 

This demonstrates the suitability of our validation dataset for assessing a higher resolution map for 522 

comparison. Based on 15252 sample pixels derived from our validation data, the overall accuracy of the 523 

Globeland30 was estimated at 66.6 ±2.4% (Table 5). This accuracy is lower than the accuracy reported 524 

by the map producers (79.26% ± 0.2%) (Chen et al. 2015). However the accuracy by Chen et al. (2015) 525 

is for the entire globe and while the results obtained in this study are for Africa, a continent that tends 526 

to have lower map accuracy than other continents (Tsendbazar et al. 2016a). We used the dominant land 527 

cover type for validation, because details in the legend definition of some classes were not clear for this 528 

map. However, if more detailed information on the legend thresholds is made available, validation could 529 
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also be done based on the legend definition of the Globeland30 map. There is a 5-year difference in the 530 

reference year of the Globeland30 2010 map and this might have an influence on the lower overall 531 

accuracy for this map. The assessment of this map serves here to demonstrate our validation data 532 

applicability for maps having different spatial resolutions. It should be noted that temporal discrepancies 533 

between validation data and maps to be assessed should be kept at a minimum.  534 

Since the CGLS-LC100 validation dataset has reference land cover information at 10m×10m subpixels 535 

for a spatial support of 100m×100m, the validation dataset can be used for assessing and comparing the 536 

accuracy of maps at 10-100m resolutions, including 10-20m resolution Sentinel-2 based land cover 537 

maps. Recently, Lesiv et al. (2017) assessed the prototype version of the Sentinel-2 based CCI20 African 538 

land cover map (CCI Land Cover 2017a) using the CGLS-LC100 training and validation datasets. In 539 

this case, the reference land cover corresponding to the Sentinel-2 20m×20m pixels was extracted based 540 

on 2×2 subpixels of the validation dataset. This further emphasizes the applicability of our validation 541 

dataset for higher resolution map assessments. Using the validation data for higher spatial resolution 542 

maps increases the number of sample sites (e.g., 15252 for 30m resolution Globeland30). However, in 543 

this situation, the accuracy statistics should be estimated using cluster sampling equations  (Pengra et 544 

al. 2015; Stehman et al. 2003) since otherwise standard errors would be underestimated.   545 

4.4.  Map validation from different users’ perspectives 546 

The land cover fraction information of the validation dataset allowed the assessment of the CGLS-547 

LC100 product from different users’ perspectives. We created four maps with different legends (Figure 548 

4) reflecting users’ preferences on different land cover types (Lesiv et al. 2016b), and our results showed 549 

varying overall accuracies (73.7% ±2.1% for biodiversity to 93.5±0.9 for crop monitoring) (Table 6). 550 

Differences can partly be attributed to the number of land cover classes considered in the assessments 551 

but also the class combinations used matter. Accuracy for the biodiversity users was lower due to the 552 

number of classes used in the assessment. The higher overall accuracy for crop monitoring (cropland 553 

and non-cropland map) was to be expected since internal confusions among non-cropland classes are 554 

discarded in this assessment. Thus, the cropland class accuracies are also important map quality 555 

measures in this case. The overall accuracy of the CGLS-LC100 cropland mask is similar, but the 556 
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cropland class accuracies are lower compared to the Landsat based nominal cropland mask (Xiong et al. 557 

2017). In the forest monitoring applications, a map with more forest classes was created by combining 558 

the discrete and tree cover fraction map of the CGLS-LC100 product. This further illustrates the 559 

suitability of the CGLS-LC100 product towards creating user-tuned maps. Note that the users of land 560 

cover maps are not restricted to the user groups identified in this study and the overall map accuracies 561 

will differ for different applications, i.e., different classes of interest are considered. 562 

4.5. Lessons learnt on the multi-purpose validation data development  563 

Although the validation dataset was successfully developed and utilized for assessing multiple land 564 

cover maps, the dataset also has some limitations to be fully compatible for other map assessments. 565 

Sample stratification is focused on the heterogeneity of landscapes (natural and human influenced) 566 

(Olofsson et al. 2012) and it was not specifically designed to validate changes in the land cover, which 567 

may be a prominent issue when the aim is to estimate change areas for each land cover type. For this, 568 

additional strata (e.g., change areas for the corresponding period) need to be added to better represent 569 

changed areas and the inclusion probability of the augmented sample sites need to be calculated 570 

accordingly (Stehman et al. 2012).  571 

Furthermore, the CGLS-LC100 validation dataset is based on the Proba-V grid at 100m and this could 572 

be problematic for validating another map at 100m resolution in which the pixel alignment (grid) may 573 

mismatch the Proba-V one. In contrast, for higher resolution maps e.g., 20-30m, the full coverage of the 574 

reference land cover over the target pixel can be calculated and used as reference. For 10m resolution 575 

map assessments, geolocation errors may have a bigger impact. To reduce impact of such errors, 576 

assessment units of 2×2 or 3×3 pixels can be  used after resampling the map to 20m or 30m resolution.  577 

This also implies accuracy is evaluated at 20m or 30m resolution rather than at the original 10m. Such 578 

approach has been used by Mayaux et al. (2006) and Land Cover CCI. (2014).  579 

To support the use of this validation data for other map assessments, future work can focus on 580 

developing a service to provide instantly validated user-tuned land cover maps of the CGLS-LC100 581 

products. The validation results could also be provided when other land cover maps are uploaded to the 582 
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service. This ensures the validation dataset is used for validation purpose rather than training or 583 

calibration purposes.  584 

5. Summary 585 

This study designed and developed a multi-purpose validation dataset that aims to be applicable for 586 

multiple map assessments. The dataset was developed as part of an independent assessment of the 587 

CGLS-LC100 land cover product for Africa. We demonstrated the applicability of the validation dataset 588 

for multi-purpose assessments requiring different legends and spatial resolution and requiring different 589 

accuracy metrics. 590 

We collected a validation dataset consisting of 3 617 sample sites for Africa using a global stratification 591 

independent from any land cover map. Reference land cover of the sample sites (100m × 100m area) 592 

was recorded at 10m × 10m subpixels by visual interpretation on a dedicated branch of the Geo-Wiki 593 

platform with contributions from several regional experts from Africa. Several quality measures were 594 

applied to ensure data quality. The response design of this validation dataset facilitates flexibility 595 

towards multi-purpose applications. For example, the ability to assess maps of different resolution (10-596 

100m) is gained by subpixel level reference land cover information. The validation data also supports 597 

assessment of maps with different legends. As opposed to creating legend categories by merging certain 598 

classes, subpixel level reference land cover data allow specifically targeting classes defined by user-599 

specific composition thresholds. Furthermore, the stratified sampling scheme enables sample 600 

augmentation for classes of interest (Stehman et al. 2012). 601 

The applicability of the validation dataset was demonstrated for (1) validation of discrete and fractional 602 

land cover maps (CGLS-LC100 product: overall accuracy 74.6% ±2.1% for the discrete and MAE 603 

6.15%-16% for the fraction cover layers); (2) map comparison (Globeland30-2010 map: overall 604 

accuracy 66.6 ±2.4%); and (3) user oriented accuracy reporting (CGLS-LC100 product users: overall 605 

accuracy: 73.7% +/-2.1% to 81.3% +/- 1.4%).   606 

In addition, the validation dataset is compatible with CGLS’s focus on operational monitoring of land 607 

cover with yearly releases of global maps. The global stratification used in the sampling facilitates 608 
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expanding to global scale by replicating the current setup for data collection in African continent for 609 

other continents to collect validation dataset at global scale, with additional resources and expert 610 

involvements. The flexibility of stratified sampling allows augmenting the validation dataset for 611 

validating subsequent new maps to meet the updated validation requirement of the CEOS-WGCV Stage 612 

4 validation. For the latter purpose, sampling needs to be densified in change area by re-interpreting 613 

additional sample sites. On the contrary, validation sites in no-change areas can be re-used with little 614 

effort by re-interpreting only a part of sample sites in no-change areas.  615 

Although the validation dataset was demonstrated to be suitable for multiple purposes of land cover map 616 

assessments, there are remaining aspects that require further attention. The validation dataset was not 617 

specifically designed to validate changes in the land cover. Thus, if the aim is to estimate change areas 618 

for each land cover type, additional strata (e.g., likely change areas) need to be added to better represent 619 

those areas. Furthermore, as validation data collection is a collective work, significant effort is needed 620 

to maintain a dataset up-to-date. Therefore, to maintain a full utility of a validation dataset, the 621 

importance of updating should be recognized. To better understand the importance of the experts’ 622 

contribution, interpretation variability and its cause are currently being investigated in separate study. 623 

Finally, to provide timely assessments of new and yearly global land cover products, map producers are 624 

encouraged to improve the efficiency of validation datasets given the available resources. In this respect, 625 

the proposed design of the validation dataset can serve as a basis to improve upon.  626 
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