44 research outputs found

    Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    Get PDF
    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version

    Kinome Profiling Reveals an Interaction Between Jasmonate, Salicylate and Light Control of Hyponastic Petiole Growth in Arabidopsis thaliana

    Get PDF
    Plants defend themselves against infection by biotic attackers by producing distinct phytohormones. Especially jasmonic acid (JA) and salicylic acid (SA) are well known defense-inducing hormones. Here, the effects of MeJA and SA on the Arabidopsis thaliana kinome were monitored using PepChip arrays containing kinase substrate peptides to analyze posttranslational interactions in MeJA and SA signaling pathways and to test if kinome profiling can provide leads to predict posttranslational events in plant signaling. MeJA and SA mediate differential phosphorylation of substrates for many kinase families. Also some plant specific substrates were differentially phosphorylated, including peptides derived from Phytochrome A, and Photosystem II D protein. This indicates that MeJA and SA mediate cross-talk between defense signaling and light responses. We tested the predicted effects of MeJA and SA using light-mediated upward leaf movement (differential petiole growth also called hyponastic growth). We found that MeJA, infestation by the JA-inducing insect herbivore Pieris rapae, and SA suppressed low light-induced hyponastic growth. MeJA and SA acted in a synergistic fashion via two (partially) divergent signaling routes. This work demonstrates that kinome profiling using PepChip arrays can be a valuable complementary ∼omics tool to give directions towards predicting behavior of organisms after a given stimulus and can be used to obtain leads for physiological relevant phenomena in planta

    Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells.

    Get PDF
    The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle

    Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction

    Get PDF
    Virus assembly and interaction with host-cell proteins occur at length scales below the diffraction limit of visible light. Novel super-resolution microscopy techniques achieve nanometer resolution of fluorescently labeled molecules. The cellular restriction factor tetherin (also known as CD317, BST-2 or HM1.24) inhibits the release of human immunodeficiency virus 1 (HIV-1) through direct incorporation into viral membranes and is counteracted by the HIV-1 protein Vpu. For super-resolution analysis of HIV-1 and tetherin interactions, we established fluorescence labeling of HIV-1 proteins and tetherin that preserved HIV-1 particle formation and Vpu-dependent restriction, respectively. Multicolor super-resolution microscopy revealed important structural features of individual HIV-1 virions, virus assembly sites and their interaction with tetherin at the plasma membrane. Tetherin localization to micro-domains was dependent on both tetherin membrane anchors. Tetherin clusters containing on average 4 to 7 tetherin dimers were visualized at HIV-1 assembly sites. Combined biochemical and super-resolution analysis revealed that extended tetherin dimers incorporate both N-termini into assembling virus particles and restrict HIV-1 release. Neither tetherin domains nor HIV-1 assembly sites showed enrichment of the raft marker GM1. Together, our super-resolution microscopy analysis of HIV-1 interactions with tetherin provides new insights into the mechanism of tetherin-mediated HIV-1 restriction and paves the way for future studies of virus-host interactions

    Mechanisms Underlying the Confined Diffusion of Cholera Toxin B-Subunit in Intact Cell Membranes

    Get PDF
    Multivalent glycolipid binding toxins such as cholera toxin have the capacity to cluster glycolipids, a process thought to be important for their functional uptake into cells. In contrast to the highly dynamic properties of lipid probes and many lipid-anchored proteins, the B-subunit of cholera toxin (CTxB) diffuses extremely slowly when bound to its glycolipid receptor GM1 in the plasma membrane of living cells. In the current study, we used confocal FRAP to examine the origins of this slow diffusion of the CTxB/GM1 complex at the cell surface, relative to the behavior of a representative GPI-anchored protein, transmembrane protein, and fluorescent lipid analog. We show that the diffusion of CTxB is impeded by actin- and ATP-dependent processes, but is unaffected by caveolae. At physiological temperature, the diffusion of several cell surface markers is unchanged in the presence of CTxB, suggesting that binding of CTxB to membranes does not alter the organization of the plasma membrane in a way that influences the diffusion of other molecules. Furthermore, diffusion of the B-subunit of another glycolipid-binding toxin, Shiga toxin, is significantly faster than that of CTxB, indicating that the confined diffusion of CTxB is not a simple function of its ability to cluster glycolipids. By identifying underlying mechanisms that control CTxB dynamics at the cell surface, these findings help to delineate the fundamental properties of toxin-receptor complexes in intact cell membranes
    corecore