140 research outputs found

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.

    Get PDF
    Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance

    Thioredoxin-binding protein-2 (TBP-2/VDUP1/TXNIP) regulates T-cell sensitivity to glucocorticoid during HTLV-I-induced transformation

    Get PDF
    Although glucocorticoid (GC) is widely used for treating hematopoietic malignancies including adult T-cell leukemia (ATL), the mechanism by which leukemic cells become resistant to GC in the clinical course remains unclear. Using a series of T-cell lines infected with human T lymphotropic virus type-I (HTLV-I), the causative virus of ATL, we have dissected the transformation from interleukin (IL)-2-dependent to -independent growth stage. The transformation associates the loss of thioredoxin-binding protein-2 (TBP-2), a tumor suppressor and regulator of lipid metabolism. Here we show that TBP-2 is responsible for GC-induced apoptosis in ATL cells. In the IL-2-dependent stage, dexamethasone induced TBP-2 expression and apoptosis, both of which were blocked by GC receptor (GR) antagonist RU486. Knockdown of TBP-2 consistently reduced the amount of GC-induced apoptosis. In IL-2-independent stage, however, expression of GR and TBP-2 was suppressed and GC failed to induce apoptosis. Forced expression of GR led the cells to mild sensitivity to GC, which was also accomplished by treatment with suberoylanilide hydroxamic acid, a TBP-2 inducer. A transfection experiment showed that TBP-2 expression induced apoptosis in IL-2-independent ATL cells. Thus, TBP-2 is likely to be one of the key molecules for GC-induced apoptosis and a potential target for treating the advanced stage of ATL

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Removal of Tannic Acid From Aqueous Solution by Cloud Point Extraction and Investigation of Surfactant Regeneration by Microemulsion Extraction

    Get PDF
    The aim of this work is the extraction of tannic acid (TA) with two commercial nonionic surfactants, separately: Lutensol ON 30 and Triton X-114 (TX-114).The experimental cloud point extraction results are expressed by four responses to surfactant concentration and temperature variations: extent of TA extraction (E), remaining solute (X s,w) and surfactant (X t,w) concentrations in dilute phase and volume fraction of coacervate (Ίc) at equilibrium. An empirical smoothing method was used and the results are represented on three dimensional plots. In optimal conditions, the extraction extent of TA reaches 95 and 87 % using TX-114 and Lutensol ON 30, respectively. Sodium sulfate, cetyltrimethylammonium bromide (CTAB) addition and pH effect are also studied. Finally, the possibility of recycling of the surfactant is proved

    The role of reactive oxygen species in adipogenic differentiation

    Get PDF
    Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis. The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.The South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.http://www.springer.comseries/5584hj2019GeneticsImmunologyOral Pathology and Oral Biolog

    Programmed cell death and its role in inflammation

    Get PDF
    Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases
    • 

    corecore