49 research outputs found

    Accurate estimation of microscopic diffusion anisotropy and its time dependence in the mouse brain

    Get PDF
    Microscopic diffusion anisotropy (μA) has been recently gaining increasing attention for its ability to decouple the average compartment anisotropy from orientation dispersion. Advanced diffusion MRI sequences, such as double diffusion encoding (DDE) and double oscillating diffusion encoding (DODE) have been used for mapping μA, usually using measurements from a single b shell. However, the accuracy of μA estimation vis-à-vis different b-values was not assessed. Moreover, the time-dependence of this metric, which could offer additional insights into tissue microstructure, has not been studied so far. Here, we investigate both these concepts using theory, simulation, and experiments performed at 16.4T in the mouse brain, ex-vivo. In the first part, simulations and experimental results show that the conventional estimation of microscopic anisotropy from the difference of D(O)DE sequences with parallel and orthogonal gradient directions yields values that highly depend on the choice of b-value. To mitigate this undesirable bias, we propose a multi-shell approach that harnesses a polynomial fit of the signal difference up to third order terms in b-value. In simulations, this approach yields more accurate μA metrics, which are similar to the ground-truth values. The second part of this work uses the proposed multi-shell method to estimate the time/frequency dependence of μA. The data shows either an increase or no change in μA with frequency depending on the region of interest, both in white and gray matter. When comparing the experimental results with simulations, it emerges that simple geometric models such as infinite cylinders with either negligible or finite radii cannot replicate the measured trend, and more complex models, which, for example, incorporate structure along the fibre direction are required. Thus, measuring the time dependence of microscopic anisotropy can provide valuable information for characterizing tissue microstructure

    A valley-spin qubit in a carbon nanotube

    Full text link
    Although electron spins in III-V semiconductor quantum dots have shown great promise as qubits, a major challenge is the unavoidable hyperfine decoherence in these materials. In group IV semiconductors, the dominant nuclear species are spinless, allowing for qubit coherence times that have been extended up to seconds in diamond and silicon. Carbon nanotubes are a particularly attractive host material, because the spin-orbit interaction with the valley degree of freedom allows for electrical manipulation of the qubit. In this work, we realise such a qubit in a nanotube double quantum dot. The qubit is encoded in two valley-spin states, with coherent manipulation via electrically driven spin resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by measuring the current in Pauli blockade. Arbitrary qubit rotations are demonstrated, and the coherence time is measured via Hahn echo. Although the measured decoherence time is only 65 ns in our current device, this work offers the possibility of creating a qubit for which hyperfine interaction can be virtually eliminated

    Valley-spin blockade and spin resonance in carbon nanotubes

    Full text link
    Manipulation and readout of spin qubits in quantum dots made in III-V materials successfully rely on Pauli blockade that forbids transitions between spin-triplet and spin-singlet states. Quantum dots in group IV materials have the advantage of avoiding decoherence from the hyperfine interaction by purifying them with only zero-spin nuclei. Complications of group IV materials arise from the valley degeneracies in the electronic bandstructure. These lead to complicated multiplet states even for two-electron quantum dots thereby significantly weakening the selection rules for Pauli blockade. Only recently have spin qubits been realized in silicon devices where the valley degeneracy is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade can be observed by lifting valley degeneracy through disorder. In clean nanotubes, quantum dots have to be made ultra-small to obtain a large energy difference between the relevant multiplet states. Here we report on low-disorder nanotubes and demonstrate Pauli blockade based on both valley and spin selection rules. We exploit the bandgap of the nanotube to obtain a large level spacing and thereby a robust blockade. Single-electron spin resonance is detected using the blockade.Comment: 31 pages including supplementary informatio

    The interaction of bacterial pathogens with platelets.

    Get PDF
    In recent years, the frequency of serious cardiovascular infections such as endocarditis has increased, particularly in association with nosocomially acquired antibiotic-resistant pathogens. Growing evidence suggests a crucial role for the interaction of bacteria with human platelets in the pathogenesis of cardiovascular infections. Here, we review the nature of the interactions between platelets and bacteria, and the role of these interactions in the pathogenesis of endocarditis and other cardiovascular diseases

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore