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Abstract 

Microscopic diffusion anisotropy (μA) has been recently gaining increasing attention for its 

ability to decouple the average compartment anisotropy from orientation dispersion. 

Advanced diffusion MRI sequences, such as double diffusion encoding (DDE) and double 

oscillating diffusion encoding (DODE) have been used for mapping µA, usually using 

measurements from a single b shell. However, the accuracy of µA estimation vis-à-vis 

different b-values was not assessed. Moreover, the time-dependence of this metric, which 

could offer additional insights into tissue microstructure, has not been studied so far. Here, 

we investigate both these concepts using theory, simulation, and experiments performed at 

16.4T in the mouse brain, ex-vivo. In the first part, simulations and experimental results 

show that the conventional estimation of microscopic anisotropy from the difference of 

D(O)DE sequences with parallel and orthogonal gradient directions yields values that highly 

depend on the choice of b-value. To mitigate this undesirable bias, we propose a multi-shell 

approach that harnesses a polynomial fit of the signal difference up to third order terms in 

b-value. In simulations, this approach yields more accurate μA metrics, which are similar to 

the ground-truth values. The second part of this work uses the proposed multi-shell method 

to estimate the time/frequency dependence of μA. The data shows either an increase or no 

change in μA with frequency depending on the region of interest, both in white and gray 

matter. When comparing the experimental results with simulations, it emerges that simple 

geometric models such as infinite cylinders with either negligible or finite radii cannot 

replicate the measured trend, and more complex models, which, for example, incorporate 

structure along the fibre direction are required. Thus, measuring the time dependence of 

microscopic anisotropy can provide valuable information for characterizing tissue 

microstructure. 
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Introduction 1 

Diffusion MRI (dMRI) probes the displacement of water molecules inside the tissue 2 

and can provide a unique window into cellular architecture at subvoxel dimensions. Thus, 3 

dMRI became highly applicable for studies of disease that alter tissue microstructure, such 4 

as stroke [1, 2], multiple sclerosis [3], Alzheimer’s disease [4], etc., as well as for studies of 5 

brain plasticity [5] or development [6, 7], where changes in the microstructure precede 6 

gross anatomical variations. The most commonly used dMRI technique for brain studies is 7 

diffusion tensor imaging (DTI) [8], which assumes that the diffusion process is probed in the 8 

(anisotropic) Gaussian regime and reports metrics such as mean diffusivity (MD), fractional 9 

anisotropy (FA) and fibre direction. Although widely used in clinical applications, it is clear 10 

that the underlying microstructure is too complex to be fully characterized by a single 11 

diffusion tensor [9]. Various techniques aiming to overcome the limitations of DTI have been 12 

proposed in the literature. Approaches such as q-space imaging (QSI) [10, 11] or diffusion 13 

spectrum imaging (DSI) [12] have been developed to recover various higher-order 14 

properties of the diffusion process, while methods such as diffusion kurtosis imaging (DKI) 15 

[13] directly quantify the leading deviation from Gaussian diffusion. Other techniques aim to 16 

relate various tissue features, such as neurite density and orientation distribution [14-16], 17 

axon diameter [17-21], membrane permeability [22, 23], to the diffusion signal and then 18 

solve the inverse problem to estimate parameters of interest. 19 

Restricted diffusion induces a time-dependence of the diffusion tensor, which can be 20 

used as an additional source of information into the underlying tissue microstructure. Time- 21 

and frequency-dependencies of the diffusion coefficient have been studied in porous media 22 

[24] as well as in biological systems [25-28]. Several theoretical frameworks relate time-23 

dependent behaviours to specific morphological features, such as pore size [29-32] as well 24 

as the internal disorder and packing [27, 33, 34]. Oscillating Diffusion Encoding (ODE) can be 25 

used to probe short time scales, and have demonstrated superior tensor contrasts [35], as 26 

well as sensitivity to surface-to-volume ratio [36, 37] and restriction size in elongated pores 27 

[38-40]. 28 

By contrast with these techniques, in which orientation- and size-distributions are 29 

difficult to disentangle, estimation of microscopic anisotropy (μA) provides a different 30 

measure of the restricting geometry, which can report on its anisotropy irrespective of the 31 
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overall organization (e.g., orientation dispersion) on the voxel scale [41]. Thus, µA reflects 1 

more accurately microscopic tissue properties compared to the standard fractional 2 

anisotropy derived from DTI, and can be used as a potentially valuable biomarker. Single 3 

diffusion encoding (SDE) techniques can make various assumptions in order to model and 4 

quantify µA [42-44], but their constraints are not necessarily compatible with data acquired 5 

with different types of encoding, which can lead to biased quantification [45]. Moreover, in 6 

substrates with unknown microstructure, SDE acquisitions struggle to discriminate various 7 

microstructural configurations, such as randomly oriented anisotropic pores from 8 

distributed pore sizes [32, 41, 46-50].  9 

To resolve this ambiguity, advanced diffusion acquisitions with varying gradient 10 

orientation in one measurement are advantageous [32, 41, 47, 49-51]. Double diffusion 11 

encoding (DDE) is now perhaps the most well-established approach for quantifying µA [41, 12 

52, 53] from measurements performed using two independent pulsed gradient vectors that 13 

probe the correlation of water diffusion in different directions. DDEs are mostly used in the 14 

long mixing time regime, to ensure independence of the spin displacements within each 15 

compartment during the first and second encoding periods. In completely randomly 16 

oriented systems, theoretical studies predicted that such an approach can report on µA 17 

directly from the signal modulation [41, 54, 55], and this has been validated in systems such 18 

as phantoms [46], ex-vivo tissues and cells [56, 57], in-vivo rodents  [57-59], and humans 19 

[60], as well as for clinical applications in multiple sclerosis [61]. Very recent advances in MR 20 

Spectroscopy have been able to detect DDE modulations for brain metabolites, thereby 21 

revealing their µA and confinement [59] and imparting sensitivity towards cell-specific 22 

neuronal and astrocytic microstructures [62, 63]. To make the measurements rotationally 23 

invariant, several acquisition schemes have been proposed, mainly the 15-direction scheme 24 

by Lawrenz and Finsterbusch [64] and its subsequent extensions [65], and the DDE 5-design, 25 

which has been shown to provide even more accurate µA metrics [66]. To remove the 26 

dependence of µA on compartment size, normalized metrics of microscopic fractional 27 

anisotropy (µFA) were also reported [65, 66]. Q-space trajectory encoding (QTE) is another 28 

promising technique capable of delivering analogues of µFA in clinical imaging [50, 51, 67, 29 

68], however, the standard QTE analysis assumes Gaussian time-independent diffusion, 30 

which might bias the estimated metrics [68]. 31 
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With few exceptions [57], the DDE techniques described above are usually used to 1 

probe microscopic anisotropy at a fixed diffusion time. For instance, most DDE studies were 2 

performed with long diffusion and mixing times. Nevertheless, further insight into tissue 3 

architecture can be gained by varying diffusion times [27, 69-71]. Recent work has 4 

combined the DDE and ODE sequences in a double oscillating diffusion encoding (DODE) 5 

sequence [72], which employs two independent trains of oscillating gradients that can have 6 

different orientations. Thus, such an acquisition can be used to probe the frequency 7 

dependence of microscopic anisotropy. Additionally, one major advantage of DODE 8 

predicted by [72], is that the mixing time dependence effectively vanishes for most pore 9 

sizes, thereby facilitating the sequence’s fulfilment of the long mixing time regime (required 10 

for µA analyses) for most practical acquisitions. Indeed, a recent study showed that µFA 11 

derived from DODE, but not DDE, correlates best with axon diameter and myelin content  12 

[73]. Although quantification of µA for such sequences can be easily adapted from DDE, 13 

current approaches are based on sequences with a single b-value and assume that higher 14 

order terms O(b3) in the signal difference are negligible, which can affect the accuracy of the 15 

estimated metrics.  16 

In the first part of the present study, we show both in simulation and measured data 17 

that quantification of μA is extremely sensitive to the choice of b-value, resulting in biased 18 

estimates. We then propose a multi-shell estimation scheme which accounts for higher 19 

order terms in the signal difference to provide accurate μA values. In the second part, we 20 

use the proposed multi-shell approach with DDE and DODE sequences to investigate the 21 

time/frequency dependence of microscopic anisotropy in the ex-vivo mouse brain. The 22 

patterns emerging from time-dependent µA are then shown to provide insights into the 23 

diffusion models which can describe tissue microstructure.  24 

  25 
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Background and theory 1 

DDE and DODE sequences 2 

To investigate the dependence of microscopic anisotropy in the mouse brain on 3 

acquisition parameters, specifically diffusion weighting and time/frequency, we employ DDE 4 

and DODE sequences with different timing parameters, which are schematically illustrated 5 

in Figure 1a) and b), respectively. The DDE sequences are parametrized by pulse duration δ 6 

= δ1 = δ2, diffusion time ∆ = ∆1 = ∆2, separation time τs (time interval between the two 7 

pairs of gradients; the corresponding mixing time is τs + δ), gradients amplitudes G = G1 = 8 

G2 and directions �	
and �	� chosen according to the 5-design scheme from [66] in order to 9 

provide a powder averaged signal. The 5-design with 12 parallel and 60 orthogonal 10 

measurements, ensures a rotationally-invariant quantification of μA.  11 

The DODE sequences employ cosine-like trapezoidal waveforms described by pulse 12 

duration δ = δ1 = δ2, number of half oscillation periods N = N1 = N2, separation time τs 13 

(time interval between the two gradient waveforms) as well as gradient amplitude and 14 

direction defined in the same way as for DDE. The oscillation frequency of the DODE 15 

waveforms is calculated as 
 = �/2�. The b-values for all the sequences are calculated 16 

according to the expressions derived in [74] which take into account the finite rise time of 17 

the gradient.  18 
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 1 

 2 

Figure 1 Schematic representation of a) DDE and b) DODE diffusion sequences, with N1,2 >1. DODE 3 

sequences with N1,2 = 1 have two lobes and are equivalent with DDE sequences with gradient 4 

duration and diffusion time of δDODE/2. For DDE sequences, δ is the gradient duration from ramp up 5 

until ramp down, while for the DODE sequences, the total waveform duration is δ + rise time, to 6 

allow for the apodisation described in [75]. The rise time of the gradient is 0.1 ms for all waveforms.  7 

Quantification of microscopic diffusion anisotropy  8 

The square of microscopic diffusion anisotropy, as defined in [53], is proportional to 9 

the variance over single pore diffusion tensor eigenvalues ��, i.e. ���  ∝ var����, � =10 

�1,2,3�. For very short diffusion times ��� is vanishing, while for diffusion times long 11 

enough to allow the spins to probe the entire pore space, ��� times diffusion time squared 12 

essentially becomes the pore eccentricity. 13 

For DDE sequences with long mixing time, microscopic anisotropy can be derived 14 

from the difference of the averaged signals acquired with parallel ( ∥)  and perpendicular 15 

( ") gradient directions [66]: 16 

 μA� = 1
%� &log * 1

12 +  ∥, - log * 1
60 +  ",0 (1) 
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where the average is computed over different gradient directions and % = 1�2����Δ - �/3�, 1 

with γ the gyromagnetic ratio. For populations of identical pores, ��� is equivalent to 2 

4
5 var����. 3 

For DODE sequences, we use a similar rationale and derive the expression of ��� 4 

based on the difference between DODE measurements with parallel and orthogonal 5 

gradients. To this end, we assume a diffusion model consisting of randomly oriented axially 6 

symmetric microdomains with frequency dependent parallel and perpendicular diffusivities 7 

(D‖(ω) and D⊥(ω)), as illustrated in Figure 1c and 1d, and we follow the derivation in [76, 77] 8 

to compute the powder averaged signal. For DODE sequences with parallel and 9 

perpendicular gradients, the expressions are the following: 10 

  ∥
7.9. =  1

2 : exp >-�%
 + %���@�A�∥ cos� D + @�A�" sin� D�G sin DHD
I

J
 (2) 

and 11 

 

 "
7.9. = 1

4L : : expM-%
�@�A�∥ NOP� D + @�A�" P�Q� D�
I

J

�I

J
- %��@�A�∥ P�Q� D NOP� R 
+ @�A�" P�Q� R + @�A�" NOP� D NOP� R�S P�Q DHDHR , 

(3) 

where b1 and b2 are the b-values of the first and second gradient waveforms and the angles 12 

θ and ϕ define the gradient directions relative to each microdomain as illustrated in Figure 13 

1c. Calculating the cumulant expansion up to second order in b, the difference between 14 

DODE sequences with parallel and perpendicular gradients when b1=b2 is: 15 

 logT ∥
7.9.U - logT "

7.9.U =  %� 2
15 �@�A�∥ - @�A�"��. (4) 

Thus, ��� for a DODE sequence can be computed as: 16 

 ��� = logT ∥
W.X.U - log� ⊥

W.X.� 
%� = 2

15 �@�A�∥ - @�A�⊥�2 =  3
5  var����, (5) 

and is analogous to the expression for a DDE sequence described in equation (2).  17 

 18 

Higher order effects in quantification of μA 19 

 In the previous analysis, the computation of μA
2 is based on the second order 20 

cumulant expansion of the signal and is usually evaluated at a single b-value, which might 21 

introduce a bias when the higher order terms are not vanishing. To correct for this 22 

contribution, we can expand equation (5) to include the next order terms (b3): 23 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

 logT ∥
7.9.�%�U - logT "

7.9.�%�U =  ���%� + Y4%4 + Z�%[�, (6) 

where ��� denotes the corrected microscopic diffusion anisotropy metric computed from 1 

multi-shell data and P3 reflects the contribution of 3rd order terms. For the substrate 2 

described above consisting of identical microdomains with time dependent diffusivities  3 

 Y4 = - \
4
5 �@�A�∥ - @�A�"�4. (7) 

From here onwards we denote the apparent microscopic anisotropy measured from single 4 

shell data at a given b-value as ��] � . 5 

 6 

Normalized microscopic anisotropy metric 7 

 A convenient way to represent microscopic anisotropy and to remove its 8 

dependence on compartment size is to normalize it with respect to the size of the diffusion 9 

tensor. Thus, in analogy to macroscopic fractional anisotropy, the microscopic counterpart 10 

�^�� can be calculated as: 11 

 �^�� = 3
2

���

��� + 3
5 _@�

, (8) 

where _@ is the mean diffusivity of the diffusion tensor fitted to the D(O)DE data acquired 12 

with parallel gradient orientations. When data from multiple b-shells is used, diffusion and 13 

kurtosis tensors are fitted and MD is calculated from the eigenvalues of the diffusion tensor. 14 

The 3/2 factor ensures the same normalization as in the standard definition of FA [78]. 15 

 16 

 17 

 18 

 19 

  20 
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Methods 1 

 2 

Diffusion simulations 3 

The first part of this work investigates in simulation the dependence of estimated 4 

microscopic anisotropy on the b-value as well as on the timing parameters of the DDE and 5 

DODE sequences. We simulate the signal for protocols with identical timing parameters to 6 

the experimental ones presented in Table 1c and b-values between 250 and 4000 s/mm2, 7 

and various geometric models featuring microscopic anisotropy. For simulations, we use the 8 

MISST toolbox [79, 80], which implements a 3D extension of the multiple propagator 9 

framework. To reduce the model parameter space, we compute the powder averaged signal 10 

by simulating isotropically oriented microcompartments, thereby removing any directional 11 

information. For the geometric models, we use the nomenclature in [81]. 12 

 We simulate signals for models consisting of anisotropic compartments widely used 13 

in the literature that feature Gaussian diffusion, such as AstroZeppelins (isotropically 14 

oriented cylindrically symmetric diffusion tensors) and AstroSticks (isotropically oriented 15 

sticks with unidimensional diffusion), as well as restricted diffusion, such as AstroCylinders 16 

(isotropically oriented infinite cylinders). Furthermore, to increase the complexity of the 17 

geometric models, we also consider sticks with finite lengths and a mixture of AstroSticks 18 

and Spheres. For Zeppelins, we simulate combinations of parallel and perpendicular 19 

diffusivities between 0.05 and 2 μm2/ms, while for cylinders we simulate combinations of 20 

radii between 0.25 and 5 μm and lengths between 5 to 50 μm, with a diffusivity value of 2 21 

μm2/ms.   22 

 In the first analysis, for the microstructural models described above, we investigate 23 

the dependence of apparent ��] � on b-value for DODE sequences with δ = 10 ms, N = 4 and 24 

b values between 250 and 4000 s/mm2. Then, we correct for the effect of higher order 25 

terms by fitting equation (6) to the signal difference between measurements with parallel 26 

and perpendicular gradients. Further, we compare the corrected microscopic anisotropy 27 

��� with the ground-truth value, which is calculated in the following way: first, diffusion and 28 

kurtosis tensors are fitted to the signal from each pore separately using the measurements 29 

with parallel gradients and all b-values, then ��� is calculated for each pore from the 30 
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variance of the DT eigenvalues �4
5 var����� and finally, it is averaged over different pore sizes 1 

and orientations in each substrate.  2 

In the second simulation, we analyse the dependence of mean diffusivity as well as 3 

the corrected microscopic anisotropy metric ���  for different diffusion sequences and 4 

substrates, which we compare with the ground-truth values calculated as described above 5 

for each sequence. 6 

 7 

Table 1 Imaging and diffusion parameters for a) water phantom, b) PVP phantom and c) ex-vivo 8 

mouse brain acquisitions
R1.1

. 9 

 10 

Experiments 11 

All experiments have been performed on a Bruker Aeon Ascend 16.4 T scanner 12 

interfaced with an Avance IIIHD console and equipped with gradients capable of producing 13 

up to 3000 mT/m in all directions, and controlled by Paravision 6.01. All DDE/DODE 14 

sequences were written in-house. All animal experiments in this study were preapproved by 15 

the local ORBEA committee for animal welfare and ethics, in accordance with Portuguese 16 

and EU laws.  17 
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 1 

Phantom validation 2 

To validate the sequences’ implementation, we performed tests in two phantoms. 3 

First, we used a phantom consisting of a 5 mm NMR tube filled with a mixture of H2O and 4 

D2O (1:4) doped with copper sulphate (CuSO4). The acquisition details for the imaging 5 

parameters as well as DDE and DODE diffusion sequences used for the water phantom 6 

experiment are detailed in Table 1a. The images were acquired using single-shot EPI readout 7 

with a bandwidth of ~555 kHz and 1.20 partial Fourier. For each DDE and DODE protocol 8 8 

non-diffusion weighted images (b = 0 s/mm2) and two sets of the 72-direction diffusion 9 

weighted images were acquired, using the 5-design gradient orientations: one with the 10 

original orientation scheme, and another with inverted directions, so that cross-terms can 11 

be cancelled out [82]. The gradient strengths were adjusted to yield the specified b-value, 12 

having amplitudes between 0.32 and 1.59 T/m.  13 

Second, to test that the protocols used for imaging the mouse brain do not yield any 14 

significant artifacts in this set-up, such as due to concomitant gradients (e.g. [83, 84])R1.2, we 15 

used a phantom consisting of a 10 mm NMR tube filled with a solution of PVP40 16 

(Polyvinylpyrrolidone, Sigma Aldrich, Lisbon, Portugal) with a mass concentration of 40% in 17 

a mixture of H2O and D2O (1:9), which has similar diffusivity to ex-vivo tissue. For this 18 

phantom we used a DODE imaging protocol as detailed in Table 1bR1.1. The phantom was 19 

scanned at room temperature of 22 oC. 20 

 21 

Ex-vivo mouse brain imaging 22 

Specimen preparation: two brain samples were extracted from healthy adult mice 23 

weighing ~25 gr by standard intracardial PFA perfusion and preserved in a 4% PFA solution 24 

at 4°C. Before scanning, the brains were socked in phosphate buffered saline (PBS) for 24h 25 

and placed in a 10 mm NMR tube filled with fluorinert. All samples were scanned at 37°C.  26 

The acquisition details for the imaging parameters as well as DDE and DODE diffusion 27 

sequences used for brain imaging are detailed in Table 1c. Experiment 1 was performed in 28 

one brain, while experiment 2 was performed in both brains. The images were acquired 29 

using single-shot EPI readout with a bandwidth of ~555 kHz and 1.20 partial Fourier. For 30 

each DDE and DODE protocol 8 non-diffusion weighted images (b=0 s/mm2) and two sets of 31 

the 72-direction diffusion weighted images were acquired, using the 5-design gradient 32 
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orientations with both positive and negative directions.  The gradient strengths were 1 

adjusted to yield the specified b-value, having amplitudes less than 1580 mT/m, except for 2 

DODE with N=6 where the maximum gradient strength is 1890 mT/m. The SNR of the data is 3 

around 35 for b = 1000 s/mm2, 22 for b = 2500 s/mm2 and 15 for b = 4000 s/mm2, and the 4 

acquisition took approximately 60h for one sample. To show the robustness of the 5 

measured trends, the second brain was placed upside down in the NMR tube. 6 

 7 

Data analysis 8 

 Pre-processing: brain images have been first denoised using the random matrix 9 

theory approach [75, 85] (with a kernel of size 11), then Gibbs ringing effects were removed 10 

using the unringing algorithm in [86]. Then, the geometric average for pairs of 11 

measurements with opposite gradient directions was computed to remove any effects of 12 

cross-terms with imaging gradients [82]. The second brain was registered slice by slice to the 13 

first one using the affine registration algorithm in Matlab®. Pre-processed data has been 14 

analysed using home-written code in Matlab® (The MathWorks Inc., Natick, MA, USA).  15 

 16 

Experiment 1 – b-value dependence and accurate extraction of microscopic 17 

anisotropy  18 

The aim of the first experiment is to investigate the dependence of apparent 19 

microscopic anisotropy ��] � on b-value in the mouse brain and to propose a multi-shell 20 

approach for accurate estimation of microscopic anisotropy. To correct for higher order 21 

signal contributions, we perform a polynomial fit to the signal difference in equation (6), 22 

fitting the coefficients of b2 and b3 terms. For this analysis, we use data acquired in one 23 

brain sample with DODE sequences with δ = 15 ms and N = 7 (ν = 166Hz), and 15 b-values 24 

linearly spaced between 500 and 4000 s/mm2. For such an analysis, DODE sequences are 25 

preferable over DDE sequences, as the influence of the separation time on the signal is 26 

considerably smaller. This ensures that linear terms in b which would appear in the 27 

expression of the signal difference in equation (7) for short mixing times are indeed 28 

negligible [87]. 29 

 30 

Experiment 2 - Time/frequency dependence of diffusion metrics 31 
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 The aim of the second experiment is to investigate the dependence of different 1 

diffusion metrics on the timing of the acquisition sequence, and was performed in two brain 2 

samples. Specifically, we focus on mean diffusivity (MD) and fractional anisotropy (FA), the 3 

corrected microscopic anisotropy (���) and its normalized counterpart �^�. MD and FA 4 

were calculated from the eigenvalues of the diffusion tensor obtained when fitting the 5 

diffusion kurtosis model (DKI) [13] to data acquired with parallel gradient orientations and 6 

all the b-values for a given frequency. The DKI fit was performed using a non-linear least 7 

squares algorithm in Matlab®. For each sequence, ��� was calculated by fitting the 8 

polynomial expression in equation (6) to the signal difference measured at 5 different b-9 

values, as described in Table 1c. The normalized �^� was then computed using the 10 

corrected ��� values and the MD values. To investigate the dependence of these metrics on 11 

frequency, we perform a statistical analysis for voxels in four white matter ROIs (medial and 12 

lateral of corpus callosum, cerebral peduncle and internal capsule) and four gray matter 13 

ROIs (cortex, thalamus, piriform cortex, striatum) which have been manually delineated and 14 

are the same for both brains. For the statistical analysis, we use a random intercept and 15 

random coefficient mixed effects model where the relevant diffusion metric (measured at 16 

each voxel) is considered as the dependent variable and the frequency ν as the explanatory 17 

variable. Thus, the variable ν is nested in a voxel identifier, which is nested in a subject 18 

identifier. The significance level is adjusted for the number of voxels using the conservative 19 

Bonferroni correction.   20 
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Results 1 

Simulations  2 

One of the questions this study aims to answer, is how accurate is the estimation of 3 

microscopic anisotropy, when measured at different b-values. Figure 2 plots the apparent 4 

microscopic anisotropy ��] � estimated from DODE experiments performed using a range of 5 

b-values and different models of microstructure featuring either Gaussian diffusion (Figure 6 

2a, 2b and 2d) or restricted diffusion (Figure 2c, 2e and 2f) (blue curves), as well as the 7 

ground-truth values μA
2

g.t. (yellow lines). For all models, clearly, the ��] � estimated from a 8 

single b-value strongly depends on the specific b-value employed. We postulated that this 9 

dependence arises from contributions of higher-order terms in the signals. Indeed, when 10 

��� is computed using the information from all b-values to correct for higher order terms, 11 

similar values to the ground-truth are obtained. Slight departures are present for substrates 12 

with a mixture of sizes. Moreover, for most substrates with similarly sized pores, the 13 

estimated P3 coefficient is in good agreement with its ground-truth value computed in a 14 

similar way to μA
2

g.t., (less than 14% difference for zeppelins, sticks, cylinders and finite 15 

sticks), while for zeppelins with a distribution of diffusivities and the mixture of sticks and 16 

spheres, where the assumption of identical pores fails, the difference is larger, i.e. 20% and 17 

39%, respectively.   18 

The second objective of this study was to investigate the time/frequency 19 

dependence of µA. Prior to probing this question with experiments, we sought to gain 20 

insight from further simulations. Figure 3 plots the corrected microscopic anisotropy 21 

metrics, ��� and the corresponding ground-truth values ���
g.t., as well as the estimated 22 

MD, as a function of the timing parameters of DDE (to probe different times) and DODE (to 23 

probe different frequencies) for microstructural models featuring restricted diffusion. For 24 

the AstroSticks model, and other models featuring Gaussian diffusion (not shown), 25 

microscopic anisotropy ��� and MD do not depend on diffusion time/frequency. For the 26 

AstroCylinders model (Figure 3a and 3b) ��� decreases, while MD increases with frequency. 27 

When investigating pores of finite length, as well as a mixture of sticks and spheres, the 28 

time/frequency dependence becomes more complex. For AstroFiniteSticks (Figure 3c and 29 

d), both ��� and MD overall increase with frequency, while for AstroFiniteCylinders (data 30 

not shown) ��� increases less. For the sticks and spheres model considered here, ��� 31 
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increases with decreasing diffusion time and then plateaus for higher frequencies, and MD 1 

also increases with frequency.  Due to the finite pulse length, the power spectra of DODE 2 

sequences, i.e. the squared Fourier transform of the diffusion gradient time integral, are not 3 

ideal with a sharp peak at the given frequency, but also have secondary peaks and 4 

harmonics which influence the observed frequency dependence, as illustrated in Figure 3h. 5 

There is a good agreement between the estimated ��� and the ground-truth values, 6 

especially for DODE sequences with higher frequencies, as the separation time becomes 7 

much larger than the characteristic diffusion time and terms linear in b are negligible, as 8 

assumed in the derivation of ���.  9 

 10 

Figure 2 Apparent microscopic anisotropy (��] �) as a function of b-value for different microstructural 11 

models as well as the corrected anisotropy metric (���) and the ground-truth values (���
g.t.).  The 12 

parameters used for the substrates are the following: a) AstroZeppelins (isotropically oriented 13 

cylindrically symmetric tensors with D‖ = 1 μm
2
/ms and D⊥ = 0.1 μm

2
/ms); b) AstroSticks (isotropically 14 

oriented sticks with D‖ = 2 μm
2
/ms); c) AstroCylinders (isotropically oriented cylinders with D = 2 15 

μm
2
/ms and Gamma distributed radii with a mean of 1 μm and a shape parameter of 3); d) 16 

AstroZeppelins with a mixture of diffusivities (D‖ = {0.5, 1, 1} μm
2
/ms, D⊥ = {0.1, 0.1, 0.5} μm

2
/ms and 17 

corresponding volume fractions of 0.2, 0.5 and 0.3, respectively); e) AstroFiniteSticks (isotropically 18 

oriented sticks with an equal mixture of lengths L = {5, 10, 50} μm); f) AstroSticks and Spheres 19 

(isotropically oriented sticks and spheres with radius of 6 μm and a volume fraction of 0.25). 20 
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 1 

Figure 3 a), c), e) Corrected anisotropy metric (���) and the ground-truth values (���
g.t.) as a 2 

function of the sequence timing parameters. b), d), f) Mean diffusivity as a function of sequence 3 

timing parameters. The first two points on the x-axis represent DDE sequences with two different Δ/τs 4 

combinations, and the rest of the points represent DODE sequences with different frequencies. The 5 

microstructural models have the same parameters as the equivalent ones in Figure 2. g)-h) Schematic 6 

representation of the diffusion gradient waveforms and their corresponding power spectra. 7 

 8 

Phantom validation 9 

We then sought to study experimentally the predictions of the simulations above 10 

and the new DODE sequences presented here for the first time were validated on two 11 

phantoms.  12 

For the water phantom, Figure 4a and 4b show the raw data for non-weighted and 13 

diffusion weighted (DODE, N = 10) images, while Figure 4c plots the mean diffusivity (MD) 14 

map for the same sequence. Figure 4d presents the estimated MD for different acquisitions, 15 

validating that it does not depend on the timing parameters of the sequences, as expected 16 

for free diffusion. The average MD value is 2.11±0.02 μm2/ms, in agreement with the 17 

diffusivity of water at 22oC and off-the-shelf DTI experiments which yielded an MD value of 18 
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2.15±0.04 μm2/ms.  Figure 4e illustrates the difference between measurements with parallel 1 

and perpendicular gradient directions, which is negligible for all sequences. These results 2 

show that DDE and DODE sequences have been properly implemented, have the correct b-3 

values, and have no artifacts for the gradient strengths used here (< ~1.6 T/m).  4 

The experiments in the PVP phantom aimed to show that there were no artifacts in 5 

the estimation of the diffusion metrics using almost the same acquisition as in the mouse 6 

brain. Figure 4f shows the parameter maps for MD, FA, ��� and μFA2 derived from the full 7 

protocol with N = 6, following the analysis described for the theory section. Figure 4g shows 8 

the median and interquartile range of these metrics for 3 frequencies (66, 133 and 200 Hz). 9 

There is no statistically significant change with frequency in any of the metrics, following the 10 

analysis outlined in the methods section. The MD values measured with DODE sequences 11 

(0.50±0.03 μm2/ms) overlap with those estimated from an “off-the-shelf” DTI [8] acquisition 12 

(0.51±0.08 μm2/ms) and are similar to values previously reported in the literature [88].  13 

  14 
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 1 

  2 

Figure 4 Water phantom results: raw data for a) non-diffusion and b) diffusion weighted (DODE, N = 3 

10 / 333 Hz, orthogonal gradients) images; c) MD map calculated for DODE sequences with N = 10; d) 4 

Estimated MD and e) signal difference between measurements with parallel and perpendicular 5 

gradients for different DDE and DODE sequences. The first two points on the x-axis represent DDE 6 

sequences with two different Δs, and the rest of the points represent DODE sequences with different 7 

frequencies; the gradient strength is also reported for each sequence. The dashed line in Figure 4e) 8 

represents the zero mark. PVP phantom results: f) maps of diffusion metrics (MD, FA, ���, μFA) 9 

calculated from the DODE protocol with N = 6; g) median and interquartile range of diffusion metrics 10 

for three different frequencies (ν = 66, 133 & 200 Hz). 11 

 12 
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 1 

 2 

Figure 5 Example raw data for DODE sequences with N=5 at three different b-values and four 3 

different gradient orientations.   4 

Experiment 1 -  b-value dependence of microscopic anisotropy 5 

To test whether a similar dependence of microscopic anisotropy on b-values would 6 

emerge also in neural tissue, we employ the DODE dataset with a frequency of 200 Hz 7 

acquired for 15 b-values between 500 and 4000 s/mm2. Figure 5 presents example raw data 8 

with three different b-values and four different gradient directions. Figure 6 illustrates ��] � 9 

maps measured at each b-value using the DODE dataset. The plots show indeed that ��] � 10 

values decrease with increasing b-value, with a more pronounced dependence in white 11 

matter. Moreover, the maps derived from data acquired at low b-values (< 1000 s/mm2) are 12 

very noisy, as the difference between measurements with parallel and perpendicular 13 

gradients is very small, and thus the effect of noise gets amplified. 14 

Figure 7 presents the corrected microscopic anisotropy map ���, as well as the 15 

fitted polynomial coefficient (P3) corresponding to the third order term in b in equation (7). 16 

��� values are higher compared to the ��] � values measured at larger b values (> 2000 17 

s/mm2), which are usually employed in DDE studies. The P3 map shows that the strongest 18 
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decrease with b-value is present in white matter, while in gray matter the P3 values are 1 

closer to zero.  2 

 3 

Figure 6 Apparent microscopic anisotropy maps (��] �) for DODE sequences with N = 5 (166 Hz) and b 4 

values between 500 and 4000 s/mm
2
.  5 

 6 

Figure 7 a) Microscopic anisotropy maps calculated using the mutli-shell approach (���) and b) 7 

corresponding polynomial coefficient map (P3) for the b
3
 terms in equation (7) calculated for DODE 8 

sequences with N = 5 (166 Hz). 9 

 10 
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 2 

Experiment 2 -  Time/frequency dependence of diffusion metrics 3 

After ensuring that microscopic anisotropy can be assessed accurately using our 4 

novel multi-shell approach, we sought to investigate time/frequency dependencies of 5 

microscopic anisotropy. Figure 8 illustrates representative parameter maps for MD, FA,  ��� 6 

and �^� for DDE and DODE with different timing parameters in the first brain sample, and 7 

similar patterns were obtained in the second sample as well. The results show that MD 8 

increases with frequency, while FA slightly decreases with frequency. ��� slightly increases 9 

with frequency, while �^� increases in some regions and decreases in others.  10 

A more quantitative description of time/frequency dependence can be assessed 11 

using ROI analysis for the frequency dependence of various metrics. Figure 9a and 9b 12 

illustrate the choice of ROIs in gray matter (cortex, thalamus, piriform cortex and striatum) 13 

and white matter (medial and lateral corpus callosum, cerebral peduncle and internal 14 

capsule) and the dependence of MD, FA, ��� and �^� on the timing parameters of DDE and 15 

DODE sequences. The median and interquartile range of the diffusion metrics shown in 16 

Figure 9 are computed over ROI voxels pooled from both brain samples. Table 2a 17 

summarises the results of the statistical analysis which tests the dependence of the 18 

diffusion metrics on the frequency of DODE sequences. The slope characterizing the change 19 

of the diffusion metrics with frequency is given for different ROIs, and the darker shaded 20 

cells represent statistically significant values.  The results confirm that MD increases with 21 

frequency (slopes between 0.43 × 10-3 and 0.54 × 10-3 μm2/ms/Hz in gray matter and 22 

between 0.48 × 10-3 and 0.92 × 10-3 μm2/ms/Hz in white matter), while a small FA decrease 23 

with frequency is significant in most ROIs considered here except for piriform cortex, and 24 

cerebral peduncle. ��� values are significantly higher for the DDE sequence with shorter 25 

diffusion compared to the other DDE sequence in most gray matter ROIs (slopes between -26 

0.001 and -0.0015 μm4/ms2/s), while in white matter there is a significant difference only for 27 

the media corpus callosum (-0.0027 μm4/ms2/s). For DODE sequences, there is a significant 28 

increase in ��� with frequency in most gray and white matter ROIs, except for cerebral 29 

peduncle (slopes between 0.06 × 10-3 and 0.1 × 10-3 μm4/ms2/Hz in gray matter and 30 

between 0.15 × 10-3 and 0.26 × 10-3 μm4/ms2/Hz in white matter). When considering the 31 
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normalized microscopic anisotropy metric �^�, the dependence on frequency is more 1 

variable, with a significant increase in some gray matter ROIs (cortex and piriform cortex), a 2 

significant decrease in cerebral peduncle and no significant change in the other ROIs. μFA 3 

values, which directly reflect the microscopic anisotropy of tissue without the effect of fibre 4 

orientation, are significantly higher (p<<0.01) than FA values in all the ROIs considered here, 5 

for both DDE and DODE measurements. The relative difference between μFA and FA is 6 

larger in the gray matter compared to white matter, as illustrated in Table 2b. For white 7 

matter ROIs, the relative difference between μFA and FA is higher in the internal capsule 8 

and corpus callosum compared with the cerebral penduncle, which is consistent with the 9 

amount of fibre dispersion measured in previous studies [89]. Negative values in μA
2
 can 10 

occur both due to noise, as well as due to the sequence not satisfying the long mixing time 11 

assumption, and corresponding �^� values were set to 0 and not included in the frequency 12 

analysis. Nevertheless, similar trends and significance levels were observed for �^�� which 13 

included all voxels. In general, the �^� estimates are noisier in white matter compared to 14 

gray matter, as structures are smaller with fewer voxels in the given WM ROIs, and more 15 

prone to partial volume effects.  16 

 17 

Figure 8 Diffusion derived metrics (MD, FA, ���, μFA) for DDE and DODE sequences with different 18 

timing parameters.  19 
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 1 

Figure 9  Dependence of diffusion metrics (MD, FA, ���, μFA) on the timing parameters of DDE and 2 

DODE sequences for four ROIs in a) gray matter (cortex, thalamus, piriform cortex and striatum) and 3 

b) white matter (medial and lateral corpus callosum, cerebral peduncle and internal capsule). The 4 

plots show the median and interquartile range of the parameters computed over the ROI voxels from 5 

the two brain samples and each ROI is represented by a different colour. 6 
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 1 

Table 2 a) Slope estimated from the statistical model illustrating the dependence of various metrics 2 

(MD, FA, d���, μFA) on the frequency of DODE sequences in different gray and white matter ROIs. 3 

Darker shaded cells represent statistically significant values (p < 0.05/number of voxels, adjusted for 4 

multiple comparisons using the conservative Bonferoni correction). b) Median FA and μFA values for 5 

different ROIs and acquisition sequences. The shaded cells colour code the relative difference (μFA-6 

FA)/ μFA in five intervals between 0.3 (lightest shade) and 0.8 (darkest shade). 7 

 8 

  9 
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Discussion 1 

Mapping microscopic anisotropy using advanced diffusion MRI sequences, such as double 2 

diffusion encoding, provides a marker of tissue microstructure while mitigating the effects 3 

of orientation dispersion, and has been gaining popularity in neuroimaging studies. This 4 

work harnesses DODE and DDE acquisitions to study µA in the mouse brain, and its aims 5 

were two-fold: (1) to provide a multi-shell approach for accurate quantification of µA, and 6 

(2) to study its time/frequency dependence. In the first part, we show that standard single 7 

b-value quantification of µA results in biased estimates, and propose a method for obtaining 8 

an accurate estimation of µA which requires data samples from multiple b-values and a 9 

higher order fit. In the second part, we map the corrected µA metrics and perform a 10 

comprehensive characterization of their frequency dependencies in the mouse brain, using 11 

the advanced DODE sequence which was previously introduced theoretically in [72]. The 12 

main advantage of DODE is that it easily fulfils the long mixing time regime, which is highly 13 

advantageous for such characterizations. To our knowledge this and [73] are the first to use 14 

this pulse sequence, which we are happy to provide on request. Below, we elaborate and 15 

discuss each of these findings.  16 

  17 

Dependence of ��] � on the b-value.  18 

Nearly all previous studies on DDE have focused mainly on estimation of µA using a 19 

single b-value. Our simulations were designed to investigate µA in simple systems where the 20 

ground-truth is a-priori known, and the results clearly show that the estimated μA
2 21 

decreases with b-value for a variety of microstructural models which feature microdomains 22 

with either Gaussian or restricted diffusion. Thus, measuring apparent ��] � at a single b-23 

value, can bias the estimates compared to the ground-truth, especially for higher b-values (> 24 

3000 s/mm2). On the other hand, estimating ��] � from data acquired at low b-values (<1500 25 

s/mm2) results in very noisy estimations, as the difference between measurements with 26 

parallel and perpendicular gradients becomes comparable to the standard deviation of 27 

noise characteristic for most practical (and indeed, even state-of-the-art) DWI acquisitions. 28 

These trends were clearly shown in the experimental data, that was acquired with very good 29 

SNR at 16.4 T (~35 for b = 1000 s/mm2, ~22 for b = 2500 s/mm2 and ~15 for b = 4000 s/mm2 30 

after denoising) to avoid bias due to measurement noise. Although, the maps at low b-31 
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values show very noisy µA contrast, the b-value dependence was also clearly evident from 1 

the experimental results. This dependence corresponds to the simulation predictions, and 2 

requires the higher-order term correction to improve the accuracy of μA estimation.  3 

 4 

Accurate estimation ��� from multi-shell acquisitions.  5 

Once the bias in apparent ��] � became clear both from simulation and experiments 6 

and its origins traced to the higher order terms, we devised a correction scheme that would 7 

enable an accurate estimation of this important quantity. The simulations indicated that a 8 

model of the D(O)DE signal difference which includes both second and third order terms in b 9 

can be fitted to data acquired at multiple b-values to obtain a much more reliable estimate 10 

of microscopic anisotropy, which was found to be similar to the expected ground-truth 11 

value (c.f. Figure 2). For substrates which consist of identical microdomains, the corrected 12 

��� estimates are almost identical to the ground-truth values, while small departures can be 13 

seen in substrates which feature a distribution of pore sizes/diffusivities. Again, this 14 

suggests that many µA metrics reported so far using data from a single b-value may have 15 

been underestimated, e.g. [65, 66].  When microscopic anisotropy is estimated from a data 16 

set acquired at a single b-value, then a compromise between SNR and estimation bias needs 17 

to be considered. In our experiments, a good balance was observed for data acquired at b-18 

values between 2000 and 3000 s/mm2. 19 

It is important to note that Equation (7) assumes that terms linear in b are negligible. 20 

This implies that the long mixing time regime has been reached [90]. When this assumption 21 

is violated, the choice of mixing time can further bias microscopic anisotropy estimates from 22 

DDE sequences or DODE with the lowest frequencies, (Figure 3c) especially when size 23 

distributions are involved. In these cases, some of the pores may require longer times to 24 

reach the long tm regime, and these pores will also contain a large fraction of spins 25 

contributing to the signal. In such cases, linear terms in b are also present, and the 26 

interpretation of the b2 coefficient as microscopic anisotropy is no longer as accurate. On 27 

the other hand, DODE sequences have been shown to be quite independent on the 28 

separation time between the two waveforms (for most practical experimental conditions), 29 

especially when τs is larger than the oscillation period of the gradient and its particular value 30 

does not have a significant effect on the power spectrum of the waveform [72]. In this case 31 
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the assumption of negligible linear terms in b holds, and the estimates of microscopic 1 

anisotropy are closer to the ground-truth values (Figure 3a-3f). 2 

An alternative way to estimate microscopic anisotropy is to use the expressions of 3 

��� and P3 derived in equation 5 and 7, respectively, and to fit only one variable, namely 4 

@�A�∥ - @�A�". For the simulations presented in Figure 3, computing ��� from the fitted 5 

@�A�∥ - @�A�" yields less accurate values, especially for substrates with restricted 6 

diffusion. In experimental data, applying this analysis to the DODE dataset with 15 b values 7 

yields maps that are less noisy and have smaller values compared to those in Figure 7 a. For 8 

the dataset containing DDE and DODE sequences with different timing parameters and 5 b 9 

values, the fitting fails in a certain number of voxels, mostly in the gray matter, where ��� is 10 

smaller and the effect of noise is more pronounced, leading to negative values that are not 11 

allowed by the signal model. Overall, we found that fitting ��� and P3 separately provides 12 

more accurate and robust estimates, as it does not make any assumptions except for being 13 

in the long mixing time regime. 14 

 15 

Time/frequency dependence of ���.  16 

Time/frequency-dependencies in SDE have been proposed as fingerprints for 17 

different microstructural properties [25, 27]. However, the time/frequency dependence of 18 

microscopic anisotropy measured with D(O)DE sequences for different microstructural 19 

models has not been studied yet. Therefore, we first performed simulations, where the 20 

ground-truth is known a-priori. Indeed, the results show a different behaviour depending on 21 

the type of microstructural model analysed, as illustrated in Figure 3. For the simple stick 22 

model, we do not expect a time/frequency dependence, while for infinite cylinders, with 23 

either a single radius or a mixture of radii, microscopic anisotropy is expected to decrease 24 

with frequency. A similar trend is also observed using Monte Carlo simulations [91] in 25 

substrates featuring parallel cylinders with gamma distributed radii (mean radius 1μm, 26 

shape parameter 3) that include the effect of extracellular space. On the other hand, for 27 

models which include restriction along the fibre orientation, the time dependence of 28 

microscopic anisotropy is more complex and can show an increase with frequency. On the 29 

other hand, mean diffusivity increases with frequency in all the substrates featuring 30 

restricted diffusion. Thus, time-dependent measurements can potentially inform a choice of 31 

microstructure models which would best explain experimental data. The signal derivation 32 
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for DODE sequences in equations 3)-6) has been explicitly written for ideal sequences with a 1 

delta power spectrum at frequency ν. For the realistic power spectra depicted in Figure 3g) 2 

and h), the signal is calculated as the integral the integral over diffusion spectrum, i.e. 3 

 =  J exp�- 

I `�^�A�@�A�^∗�A� HA� , where F(ω) is the Fourier transform of the time 4 

integral of the gradient waveform [30]. Nevertheless, the interpretation of μA computed 5 

from the powder averaged signal holds [66]. 6 

We then sought to test the actual time/frequency dependencies in the fixed mouse 7 

brain. Using five b-values, the corrected ��� was estimated, but more “conventional” 8 

metrics such as MD or FA were also extracted from the data. Consistent with previous 9 

studies using oscillating gradients [92], our results show that MD increases with frequency, 10 

while FA slightly decreases [92]. By contrast with MD and FA, the microscopic anisotropy 11 

metric ���, as well as its normalized counterpart μFA, showed more variable trends. ��� 12 

evidenced an increase with frequency in most ROIs, except for cerebral peduncle, while μFA 13 

exhibited both increases (in cortex and piriform cortex) as well as decreases (in cerebral 14 

peduncle) with increasing frequency. A variation of μFA between different white matter 15 

ROIs was observed, consistent with previous pre-clinical studies in in-vivo mouse brain [93], 16 

ex-vivo monkey brain [66], as well as diffusion tensor microimaging of the ex-vivo mouse 17 

brain [89]. Differences were observed in gray matter as well. For example, in deep gray 18 

matter (e.g. striatum), which has higher content of myelin compared to cortical gray matter, 19 

[94], we see higher ��� and μFA values compared to the cortical ROIs. These results are 20 

consistent with a recent DODE study in rat spinal cord [73].  Future work will also aim to 21 

establish which histological features are the most likely cause of the trends observed in this 22 

study.  23 

The experimental data revealed an increase in MD and either an increase or no 24 

change in ��� with frequency. Comparing these results with the simulated trends suggests 25 

that tissue microstructure can be better explained by including structure along the fibre 26 

directions and/or restriction in close to isotropic pores, while simple infinite cylinders/sticks 27 

models cannot replicate the frequency dependence trends of MD and  ��� observed in the 28 

brain. However, the jagged frequency dependence observed in simulations (Figure 3c), 29 

resulting from diffusion in pores with finite sizes, is not as preeminent in the experimental 30 

data, suggesting that diffusion along fibres is not necessarily fully restricted. Moreover, 31 
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contributions from extracellular space and the effect of noise can mask such small variations 1 

with frequency. A similar deduction can be made from a theoretical standpoint. Considering 2 

the simple case of a diffusion tensor, if @�A�∥ is constant and only @�A�" increases with 3 

frequency, then both ��� and μFA are decreasing. On the other hand, the trends we see in 4 

the data (i.e. an increase in both ��� and μFA or a decrease in μFA without a significant 5 

change in ��� , combined with an increase in MD) can only result if an increase in @�A�∥ 6 

with frequency also exists, suggesting some degree of structure along the parallel direction. 7 

A pronounced decrease in @�A�" is unlikely over the time range considered here, as 8 

compartment exchange times are probably much longer [95]. Overall, the observed trends 9 

are in agreement with recent observations [70, 96]. Similarly, the DDE MRS study in [59],  10 

probing cell-specific metabolites, revealed that metabolites reside in confined spaces with 11 

finite eccentricities. On the other hand, another diffusion MRS study suggested that 12 

diffusion of various metabolites can be described by an infinite cylinder model, except for 13 

NAA (an intraneuronal marker) which requires an additional isotropic restricted 14 

compartment to capture the signal dependence on b-value [97]. However, while those 15 

studies focused on cell-specific metabolites, this study lacks the specificity to a particular 16 

compartment due to water’s ubiquity in all tissue environments, including extracellular 17 

spaces. Moreover, water and metabolites may also interact differently with the 18 

microstructure (e.g., in terms of permeability, diffusion constants, etc.), and thus water may 19 

effectively probe different environments compared with the cell-specific metabolites. 20 

Measurements from advanced sequences can also be used to investigate the validity and 21 

delineate different assumptions used in microstructure models (e.g. NODDI [43], WMTI [98], 22 

SMT [44], etc. ), however, care needs to be taken when comparing the diffusion 23 

environment (ex-vivo/in-vivo) and the range of sequence parameters. 24 

The current simulations investigated only a subset of simple geometries, and there 25 

are many other factors which could explain the trends observed in the experimental data. 26 

For instance, more complex geometries which include the effect of undulation [99, 100], 27 

neurite branching and/or the presence of spines [101]. Modelling the effects of membrane 28 

permeability could also affect the signal time dependence, however, for the diffusion times 29 

used in this study we expect a negligible effect, as the exchange times reported in the 30 

literature are an order of magnitude longer [22, 95]. Future work will investigate such 31 

effects. 32 
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This study covered a range of frequencies between 66 and 200 Hz and b-values up to 1 

4000 s/mm2, which were achieved using very strong gradients up to 1.9 T/m. Due to the fast 2 

T2 decay at ultra-high field (16.4 T) of ~20 ms [102], the gradient duration was limited to 15 3 

ms, which in turn restricted the range of available frequencies. The time/frequency 4 

dependence can also be probed on more standard preclinical systems as well as the state-5 

of-the-art Connectome human scanner. However, with limited gradient strength only lower 6 

frequencies can be probed while achieving the b-values desired for estimating ��� (2000 - 7 

3000 s/mm2).  8 

Overall, the time/frequency dependence of microscopic anisotropy and other 9 

associated metrics measured with D(O)DE sequences probes an additional dimension of the 10 

diffusion process and can provide important information regarding the microscopic tissue 11 

architectures. 12 
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Mouse brain, ex-vivo, 37
o
 

Imaging 

parameters: 

TE / TR 

 (ms) 
Matrix size FOV (mm x mm) 

In-plane resolution 

(mm x mm) 

Slice thickness 

(mm) 

 
52 / 3000 88 x 76 10.6 x 9.1 0.12 x 0.12 0.7 

Experiment 1: b-value dependence 

DODE 

sequences: 
b value (s/mm

2
) δ (ms) N / ν (Hz) τs (ms) 

Gradient 

directions 

 

500, 750, 1000, … 

3750, 4000 
15 5 / 166 5 

5-design, positive 

and negative 

Experiment 2: sequence dependence 

DDE 

sequences: 
b value (s/mm

2
) δ (ms) Δ (ms) τs (ms) 

Gradient 

directions 

 

1000, 1750, 2500, 

3250, 4000 
1.8 10, 5 16.5 

5-design, positive 

and negative 

DODE 

sequences: 
b value (s/mm

2
) δ (ms) N / ν (Hz) τs (ms) 

Gradient 

directions 

 

1000, 1750, 2500, 

3250, 4000 
15 

2, 3, 4, 5, 6 / 

66, 133, 166, 200, 233 
5 

5-design, positive 

and negative 

 

a) 

Water phantom, 22
o
 

Imaging 

parameters: 

TE / TR 

 (ms) 
Matrix size FOV (mm x mm) 

In-plane resolution 

(mm x mm) 

Slice thickness 

(mm) 

 
51.3 / 2700 84 x 76 10.1 x 9.1 0.12 x 0.12 2 

DDE 

sequences: 
b value (s/mm

2
) δ (ms) Δ (ms) τs (ms) 

Gradient 

directions 

 
1000 1 10, 5 16.5 

5-design, positive 

and negative 

DODE 

sequences: 
b value (s/mm

2
) δ (ms) N / ν (Hz) τs (ms) 

Gradient 

directions 

 
1000 15 

 2, 4, 6, 8 10 /  

 66, 133, 200, 266, 333 
5 

5-design, positive 

and negative 

b) 

PVP phantom, 22
o
 

Imaging 

parameters: 

TE / TR 

 (ms) 
Matrix size FOV (mm x mm) 

In-plane resolution 

(mm x mm) 

Slice thickness 

(mm) 

 
52 / 4000 88 x 76 12.8 x 11 0.145 x 0.145 0.7 

DODE 

sequences: 
b value (s/mm

2
) δ (ms) N / ν (Hz) τs (ms) 

Gradient 

directions 

 

1000, 1750, 2500, 

3250, 4000 
15 

 2, 4, 6/  

 66, 166, 233 
5 

5-design, positive 

and negative 

a) Gray matter ROIs White matter ROIs 
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b) 
Gray matter ROIs White matter ROIs 

ROI 1 ROI 2 ROI 3 ROI 4 ROI 1 ROI 2 ROI 3 ROI 4 

DDE 

10 ms  

FA 0.13 0.20 0.13 0.12 0.30 0.30 0.57 0.50 

μFA 0.35 0.56 0.23 0.49 0.71 0.67 0.91 0.98 

DDE 

5 ms 

FA 0.12 0.19 0.13 0.12 0.28 0.28 0.55 0.48 

μFA 0.38 0.54 0.31 0.54 0.69 0.67 0.87 0.92 

DODE 

66 Hz  

FA 0.13 0.19 0.12 0.12 0.29 0.29 0.56 0.48 

μFA 0.38 0.58 0.40 0.54 0.75 0.73 0.90 0.94 

DODE 

133 Hz 

FA 0.11 0.18 0.12 0.11 0.25 0.25 0.54 0.42 

μFA 0.38 0.54 0.43 0.47 0.74 0.71 0.88 0.92 

DODE 

200 Hz 

FA 0.10 0.16 0.12 0.11 0.26 0.26 0.55 0.44 

μFA 0.45 0.59 0.50 0.53 0.75 0.74 0.89 0.91 

 

ROI 1 ROI 2 ROI 3 ROI 4 ROI 1 ROI 2 ROI 3 ROI 4 

d MD / dν (×10-3)  0.48 0.54 0.43  0.54 0.78 0.92 0.48 0.52 

d FA / dν (×10-3) -0.16 -0.17  -0.06  -0.07  -0.29 -0.30 -0.15 -0.33 

	d 	��2 / dν (×10-3) 0.10 0.06  0.09 0.07  0.15 0.26 -0.07 0.17 

 �	��� / dν (×10-3) 0.27 -0.13 0.42 0.05  -0.16 0.03 -0.23 -0.21 


