54 research outputs found

    DW-MRI as a Biomarker to Compare Therapeutic Outcomes in Radiotherapy Regimens Incorporating Temozolomide or Gemcitabine in Glioblastoma

    Get PDF
    The effectiveness of the radiosensitizer gemcitabine (GEM) was evaluated in a mouse glioma along with the imaging biomarker diffusion-weighted magnetic resonance imaging (DW-MRI) for early detection of treatment effects. A genetically engineered murine GBM model [Ink4a-Arf−/− PtenloxP/loxP/Ntv-a RCAS/PDGF(+)/Cre(+)] was treated with gemcitabine (GEM), temozolomide (TMZ) +/− ionizing radiation (IR). Therapeutic efficacy was quantified by contrast-enhanced MRI and DW-MRI for growth rate and tumor cellularity, respectively. Mice treated with GEM, TMZ and radiation showed a significant reduction in growth rates as early as three days post-treatment initiation. Both combination treatments (GEM/IR and TMZ/IR) resulted in improved survival over single therapies. Tumor diffusion values increased prior to detectable changes in tumor volume growth rates following administration of therapies. Concomitant GEM/IR and TMZ/IR was active and well tolerated in this GBM model and similarly prolonged median survival of tumor bearing mice. DW-MRI provided early changes to radiosensitization treatment warranting evaluation of this imaging biomarker in clinical trials

    Significance of Input Correlations in Striatal Function

    Get PDF
    The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia

    Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain

    Get PDF
    Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections

    Pharmacological Strategies for the Management of Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    Full text link

    Changing perspectives on the internationalization of R&D and innovation by multinational enterprises: a review of the literature

    Get PDF
    Internationalization of R&D and innovation by Multinational Enterprises (MNEs) has undergone a gradual and comprehensive change in perspective over the past 50 years. From sporadic works in the late 1950s and in the 1960s, it became a systematically analysed topic in the 1970s, starting with pioneering reports and “foundation texts”. Our review unfolds the theoretical and empirical evolution of the literature from dyadic interpretations of centralization versus decentralization of R&D by MNEs to more comprehensive frameworks, wherein established MNEs from Advanced Economies still play a pivotal role, but new players and places also emerge in the global generation and diffusion of knowledge. Hence views of R&D internationalization increasingly rely on concepts, ideas and methods from IB and other related disciplines such as industrial organization, international economics and economic geography. Two main findings are highlighted. First, scholarly research pays an increasing attention to the network-like characteristics of international R&D activities. Second, different streams of literature have emphasized the role of location- specific factors in R&D internationalization. The increasing emphasis on these aspects has created new research opportunities in some key areas, including inter alia: cross-border knowledge sourcing strategies, changes in the geography of R&D and innovation, and the international fragmentation of production and R&D activities

    Strain-Specific Regulation of Striatal Phenotype in Drd2-eGFP BAC Transgenic Mice

    No full text
    Mice carrying bacterial artificial chromosome (BAC) transgenes have become important tools for neuroscientists, providing a powerful means of dissecting complex neural circuits in the brain. Recently, it was reported that one popular line of these mice-mice possessing a BAC transgene with a D 2 dopamine receptor (Drd2) promoter construct coupled to an enhanced green fluorescent protein (eGFP) reporter- had abnormal striatal gene expression, physiology, and motor behavior. Unlike most of the work using BAC mice, this interesting study relied upon mice backcrossed on the outbred Swiss Webster (SW) strain that were homozygous for the Drd2-eGFP BAC transgene. The experiments reported here were conducted to determine whether mouse strain or zygosity was a factor in the reported abnormalities. As reported, SW mice were very sensitive to transgene expression. However, in more commonly used inbred strains of mice (C57BL/6, FVB/N) that were hemizygous for the transgene, the Drd2-eGFP BAC transgene did not alter striatal gene expression, physiology, or motor behavior. Thus, the use of inbred strains of mice that are hemizygous for the Drd2 BAC transgene provides a reliable tool for studying basal ganglia function. © 2012 the authors
    corecore