440 research outputs found
Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system
In many application domains, conventional e-noses are frequently outperformed in both speed and accuracy by their biological counterparts. Exploring potential bio-inspired improvements, we note a number of neuronal network models have demonstrated some success in classifying static datasets by abstracting the insect olfactory system. However, these designs remain largely unproven in practical
settings, where sensor data is real-time, continuous, potentially noisy, lacks a precise onset signal and
accurate classification requires the inclusion of temporal aspects into the feature set. This investigation
therefore seeks to inform and develop the potential and suitability of biomimetic classifiers for use with typical real-world sensor data. Taking a generic classifier design inspired by the inhibition and
competition in the insect antennal lobe, we apply it to identifying 20 individual chemical odours from
the timeseries of responses of metal oxide sensors. We show that four out of twelve available sensors
and the first 30 s(10%) of the sensors’ continuous response are sufficient to deliver 92% accurate
classification without access to an odour onset signal. In contrast to previous approaches, once
training is complete, sensor signals can be fed continuously into the classifier without requiring
discretization. We conclude that for continuous data there may be a conceptual advantage in using
spiking networks, in particular where time is an essential component of computation. Classification
was achieved in real time using a GPU-accelerated spiking neural network simulator developed in our
group
Harmonising Research Reporting in the UK - Experiences and Outputs from UKRISS
The Jisc-funded UK Research Information Shared Service (UKRISS) project investigated the reporting of research information across the UK HE sector and assessed the feasibility of a national infrastructure based on CERIF with the objective of increasing the efficiency, productivity and reporting quality across the sector. A core reporting profile was developed that would enable harmonised reporting on RCUK-funded research, taking into account the HE-BCI survey as well as REF reporting elements. In this paper we describe the UKRISS modelling approach and provide some insight into the UKRISS reporting objects to support understanding of their formal CERIF representations, i.e. the selection of underlying CERIF entities; the challenges with managing objects and aggregations in CERIF. Example data extracts demonstrate the work
UK Research Information Shared Service (UKRISS) Final Report, July 2014
The reporting of research information is a complex and expensive activity for research organisations (ROs). There is little alignment between funders of the reporting requests made to institutions and requests made to individual researchers about their research outputs and outcomes. This inevitably results in duplication and increased costs across the sector, whilst limiting the potential sharing and reuse of the information. The UK Research Information Shared Service (UKRISS) project conducted a feasibility and scoping study for the reporting of research information at a national level based on CERIF (Common European Research Information Format), with the objective of increasing efficiency, productivity and quality across the sector. The aim was to define and prototype solutions which are compelling, easy to use, have a low entry barrier, and support innovative information sharing and benchmarking. CERIF has emerged as the preferred format for expressing research information across Europe. To date, CERIF has been piloted for specific applications, but not as a format for reporting requirements across all UK ROs. The final report presents the work carried out by the UKRISS project, including requirements gathering, modelling and prototyping, as well as recommendation for sustainability. UKRISS was divided into two phases. Phase 1, mapping the reporting landscape, ran from March 2012 to December 2012. Phase 2, exploring delivery of potential solutions, began in February 2013 and ended in December 2013
EXPLORING THE POTENTIAL EFFECTS OF STRENGTH TRAINING ON RUNNING ECONOMY: A SIMULATION STUDY
Strength training can improve running economy (RE) and performance in distance runners. This study investigated the effect of potential adaptations stemming from strength training on RE using simulation. Muscle-tendon unit (MTU) properties (muscle strength and mass, pennation angle, tendon stiffness, fibre composition) of muscle groups were altered within muscle-driven simulations of running at 4.5 and 6.5 m·s-1. Outputs from the muscle-driven simulations were input to an energetics model to determine whole-body metabolic power. Alterations to MTU properties resulted in variable changes (range = 1.4% decrement – 8.9% improvement in RE) to whole-body metabolic power and RE. The findings highlight potential targets for strength training programs aiming to improve RE in distance runners
Diurnal variation in expired breath volatiles in malaria-infected and healthy volunteers
We previously showed that thioether levels in the exhaled breath volatiles of volunteers undergoing controlled human malaria infection (CHMI) with P. falciparum increase as infection progresses. In this study, we show that thioethers have diurnal cyclical increasing patterns and their levels are significantly higher in P. falciparum CHMI volunteers compared to those of healthy volunteers. The synchronized cycle and elevation of thioethers were not present in P. vivax-infection, therefore it is likely that the thioethers are associated with unique factors in the pathology of P. falciparum. Moreover, we found that time-of-day of breath collection is important to accurately predict (98%) P. falciparum-infection. Critically, this was achieved when the disease was asymptomatic and parasitemia was below the level detectable by microscopy. Although these findings are encouraging, they show limitations because of the limited and logistically difficult diagnostic window and its utility to P. falciparum malaria only. We looked for new biomarkers in the breath of P. vivaxCHMI volunteers and found that a set of terpenes increase significantly over the course of the malaria infection. The accuracy of predicting P. vivax using breath terpenes was up to 91%. Moreover, some of the terpenes were also found in the breath of P. falciparum CHMI volunteers (accuracy up to 93.5%). The results suggest that terpenes might represent better biomarkers than thioethers to predict malaria as they were not subject to malaria pathogens diurnal changes
Feature selection for chemical sensor arrays using mutual information
We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays
Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514
Flood impacts on emergency responders operating at a city-scale
Emergency responders often have to operate and respond to emergency situations during dynamic weather conditions, including floods. This paper demonstrates a novel method using existing tools and datasets to evaluate emergency responder accessibility during flood events within the City of Leicester, UK. Accessibility was quantified using the 8- and 10-minute legislative targets for emergency provision for the Ambulance and Fire & Rescue services respectively under ‘normal’, no flood conditions, as well as flood scenarios of various magnitudes (namely the 1 in 20 year-, 1 in 100-year and 1 in 1,000-year recurrence intervals), with both surface
water and fluvial flood conditions considered. Flood restrictions were processed based on previous hydrodynamic inundation modelling undertaken and inputted into a Network Analysis framework as restrictions for surface water and fluvial flood events. Surface water flooding was shown to cause more disruption to emergency responders operating within the city due to its widespread and spatially distributed footprint when compared to fluvial flood events of comparable magnitude. Fire & Rescue 10-minute accessibility was shown to
decrease from 100 %, 66.5 %, 39.8 % and 26.2 % under the no flood, 1 in 20-year, 1 in 100-year and 1 in 1,000- year surface water flood scenarios respectively. Furthermore, total inaccessibility was shown to increase with flood magnitude, increasing from 6.0 % to 31.0 % under the 1 in 20-year and 1 in 100-year surface water flooding scenarios respectively. Further, the evolution of emergency service accessibility through a surface water flood event is outlined, demonstrating the rapid onset of impacts on emergency service accessibility within the first 15-minutes of the surface water flood event, with a reduction in service coverage and overlap being witnessed for the Ambulance service under a 1 in 100-year flood event. The study provides evidence to
guide strategic planning for decision makers prior to and during emergency response to flood events at the cityscale and provides a readily transferable method to explore the impacts of natural hazards or disruptions on
additional cities or regions based on historic, scenario-based events or real-time forecasting if such data is available
Bio-Benchmarking of Electronic Nose Sensors
BACKGROUND:Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. METHODOLOGY:Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). PRINCIPAL FINDINGS:Compared with a fly's odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. CONCLUSIONS:The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system
A Paleolithic diet confers higher insulin sensitivity, lower C-reactive protein and lower blood pressure than a cereal-based diet in domestic pigs
BACKGROUND: A Paleolithic diet has been suggested to be more in concordance with human evolutionary legacy than a cereal based diet. This might explain the lower incidence among hunter-gatherers of diseases of affluence such as type 2 diabetes, obesity and cardiovascular disease. The aim of this study was to experimentally study the long-term effect of a Paleolithic diet on risk factors for these diseases in domestic pigs. We examined glucose tolerance, post-challenge insulin response, plasma C-reactive protein and blood pressure after 15 months on Paleolithic diet in comparison with a cereal based swine feed. METHODS: Upon weaning twenty-four piglets were randomly allocated either to cereal based swine feed (Cereal group) or cereal free Paleolithic diet consisting of vegetables, fruit, meat and a small amount of tubers (Paleolithic group). At 17 months of age an intravenous glucose tolerance test was performed and pancreas specimens were collected for immunohistochemistry. Group comparisons of continuous variables were made by use of the t-test. P < 0.05 was chosen for statistical significance. Simple and multivariate correlations were evaluated by use of linear regression analysis. RESULTS: At the end of the study the Paleolithic group weighed 22% less and had 43% lower subcutaneous fat thickness at mid sternum. No significant difference was seen in fasting glucose between groups. Dynamic insulin sensitivity was significantly higher (p = 0.004) and the insulin response was significantly lower in the Paleolithic group (p = 0.001). The geometric mean of C-reactive protein was 82% lower (p = 0.0007) and intra-arterial diastolic blood pressure was 13% lower in the Paleolithic group (p = 0.007). In evaluations of multivariate correlations, diet emerged as the strongest explanatory variable for the variations in dynamic insulin sensitivity, insulin response, C-reactive protein and diastolic blood pressure when compared to other relevant variables such as weight and subcutaneous fat thickness at mid sternum. There was no obvious immunohistochemical difference in pancreatic islets between the groups, but leukocytes were clearly more frequent in sampled pancreas from the Cereal group. CONCLUSION: This study in domestic pigs suggests that a Paleolithic diet conferred higher insulin sensitivity, lower C-reactive protein and lower blood pressure when compared to a cereal based diet
- …