17 research outputs found

    Heart of endosymbioses : transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses

    Get PDF
    To improve their nutrition, most plants associate with soil microorganisms, particularly fungi, to form mycorrhizae. A few lineages, including actinorhizal plants and legumes are also able to interact with nitrogen-fixing bacteria hosted intracellularly inside root nodules. Fossil and molecular data suggest that the molecular mechanisms involved in these root nodule symbioses (RNS) have been partially recycled from more ancient and widespread arbuscular mycorrhizal (AM) symbiosis. We used a comparative transcriptomics approach to identify genes involved in establishing these 3 endosymbioses and their functioning. We analysed global changes in gene expression in AM in the actinorhizal tree C. glauca. A comparison with genes induced in AM in Medicago truncatula and Oryza sativa revealed a common set of genes induced in AM. A comparison with genes induced in nitrogen-fixing nodules of C. glauca and M. truncatula also made it possible to define a common set of genes induced in these three endosymbioses. The existence of this core set of genes is in accordance with the proposed recycling of ancient AM genes for new functions related to nodulation in legumes and actinorhizal plants

    Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea

    Get PDF
    Plant diseases induced by fungi are among the most important limiting factors during pre- and post-harvest food production. For decades, synthetic chemical fungicides have been used to control these diseases, however, increase on worldwide regulatory policies and the demand to reduce their application, have led to searching for new ecofriendly alternatives such as the biostimulants. The commercial application of yeasts as biocontrol agents, has shown low efficacy compared to synthetic fungicides, mostly due to the limited knowledge of the molecular mechanisms of yeast-induced responses. To date, only two genome-wide transcriptomic analyses have characterized the mode of action of biocontrols using the plant model Arabidopsis thaliana, missing, in our point of view, all its molecular and genomic potential. Here we describe that compounds released by the biocontrol yeast Hanseniaspora opuntiae (HoFs) can protect Glycine max and Arabidopsis thaliana plants against the broad host-range necrotrophic fungi Corynespora cassiicola and Botrytis cinerea. We show that HoFs have a long-lasting, dose-dependent local, and systemic effect against Botrytis cinerea. Additionally, we performed a genome-wide transcriptomic analysis to identify genes differentially expressed after application of HoFs in Arabidopsis thaliana. Our work provides novel and valuable information that can help researchers to improve HoFs efficacy in order for it to become an ecofriendly alternative to synthetic fungicides

    The AUXIN BINDING PROTEIN 1 Is Required for Differential Auxin Responses Mediating Root Growth

    Get PDF
    Background In plants, the phytohormone auxin is a crucial regulator sustaining growth and development. At the cellular level, auxin is interpreted differentially in a tissue- and dose-dependent manner. Mechanisms of auxin signalling are partially unknown and the contribution of the AUXIN BINDING PROTEIN 1 (ABP1) as an auxin receptor is still a matter of debate. Methodology/Principal Findings Here we took advantage of the present knowledge of the root biological system to demonstrate that ABP1 is required for auxin response. The use of conditional ABP1 defective plants reveals that the protein is essential for maintenance of the root meristem and acts at least on the D-type CYCLIN/RETINOBLASTOMA pathway to control entry into the cell cycle. ABP1 affects PLETHORA gradients and confers auxin sensitivity to root cells thus defining the competence of the cells to be maintained within the meristem or to elongate. ABP1 is also implicated in the regulation of gene expression in response to auxin. Conclusions/Significance Our data support that ABP1 is a key regulator for root growth and is required for auxin-mediated responses. Differential effects of ABP1 on various auxin responses support a model in which ABP1 is the major regulator for auxin action on the cell cycle and regulates auxin-mediated gene expression and cell elongation in addition to the already well known TIR1-mediated ubiquitination pathway

    The Lotus japonicus ROP3 Is Involved in the Establishment of the Nitrogen-Fixing Symbiosis but Not of the Arbuscular Mycorrhizal Symbiosis

    Get PDF
    International audienceLegumes form root mutualistic symbioses with some soil microbes promoting their growth, rhizobia, and arbuscular mycorrhizal fungi (AMF). A conserved set of plant proteins rules the transduction of symbiotic signals from rhizobia and AMF in a so-called common symbiotic signaling pathway (CSSP). Despite considerable efforts and advances over the past 20 years, there are still key elements to be discovered about the establishment of these root symbioses. Rhizobia and AMF root colonization are possible after a deep cell reorganization. In the interaction between the model legume Lotus japonicus and Mesorhizobium loti , this reorganization has been shown to be dependent on a SCAR/Wave-like signaling module, including Rho-GTPase (ROP in plants). Here, we studied the potential role of ROP3 in the nitrogen-fixing symbiosis (NFS) as well as in the arbuscular mycorrhizal symbiosis (AMS). We performed a detailed phenotypic study on the effects of the loss of a single ROP on the establishment of both root symbioses. Moreover, we evaluated the expression of key genes related to CSSP and to the rhizobial-specific pathway. Under our experimental conditions, rop3 mutant showed less nodule formation at 7- and 21-days post inoculation as well as less microcolonies and a higher frequency of epidermal infection threads. However, AMF root colonization was not affected. These results suggest a role of ROP3 as a positive regulator of infection thread formation and nodulation in L. japonicus . In addition, CSSP gene expression was neither affected in NFS nor in AMS condition in rop3 mutant. whereas the expression level of some genes belonging to the rhizobial-specific pathway, like RACK1 , decreased in the NFS. In conclusion, ROP3 appears to be involved in the NFS, but is neither required for intra-radical growth of AMF nor arbuscule formation

    Gadolinium Protects Arabidopsis thaliana against Botrytis cinerea through the Activation of JA/ET-Induced Defense Responses

    No full text
    Plant food production is severely affected by fungi; to cope with this problem, farmers use synthetic fungicides. However, the need to reduce fungicide application has led to a search for alternatives, such as biostimulants. Rare-earth elements (REEs) are widely used as biostimulants, but their mode of action and their potential as an alternative to synthetic fungicides have not been fully studied. Here, the biostimulant effect of gadolinium (Gd) is explored using the plant-pathosystem Arabidopsis thaliana–Botrytis cinerea. We determine that Gd induces local, systemic, and long-lasting plant defense responses to B. cinerea, without affecting fungal development. The physiological changes induced by Gd have been related to its structural resemblance to calcium. However, our results show that the calcium-induced defense response is not sufficient to protect plants against B. cinerea, compared to Gd. Furthermore, a genome-wide transcriptomic analysis shows that Gd induces plant defenses and modifies early and late defense responses. However, the resistance to B. cinerea is dependent on JA/ET-induced responses. These data support the conclusion that Gd can be used as a biocontrol agent for B. cinerea. These results are a valuable tool to uncover the molecular mechanisms induced by REEs
    corecore