14 research outputs found

    Cardiac Glucose and Fatty Acid Transport After Experimental Mono- and Polytrauma

    Full text link
    OBJECTIVE The aim of this study was to define the influence of trauma on cardiac glucose and fatty acid transport. The effects were investigated in vivo in a porcine mono- and polytrauma model and in vitro in human cardiomyocytes, which were treated simultaneously with different inflammatory substances, mimicking post-traumatic inflammatory conditions. METHODS AND RESULTS In the porcine fracture- and polytrauma model, blood glucose concentrations were measured by blood gas analysis during an observation period of 72 h. The expression of cardiac glucose and fatty acid transporters in the left ventricle was determined by RT-qPCR and immunofluorescence. Cardiac and hepatic glycogen storage was examined. Furthermore, human cardiomyocytes were exposed to a defined trauma-cocktail and the expression levels of glucose- and fatty acid transporters were determined. Early after polytrauma, hyperglycaemia was observed. After 48 h and 72 h, pigs with fracture- and polytrauma developed hypoglycaemia. The propofol demand significantly increased post trauma. The hepatic glycogen concentration was reduced 72 h after trauma. Cardiac glucose and fatty acid transporters changed in both trauma models in vivo as well as in vitro in human cardiomyocytes in presence of proinflammatory mediators. CONCLUSIONS Monotrauma as well as polytrauma changed the cardiac energy transport by altering the expression of glucose and fatty acid transporters. In vitro data suggest that human cardiomyocytes shift to a state alike myocardial hibernation preferring glucose as primary energy source in order to maintain cardiac function

    Reaming of femoral fractures withdifferent reaming irrigator aspirator systemsshowsdistinct effects on cardiac function after experimental polytrauma

    Get PDF
    Cardiac injuries are recorded after multiple trauma and are associated witha poor patient outcome. Reaming prior to locked intramedullary nailing is a frequently used technique to stabilize femoral diaphysis fractures. However, in polytraumatized patients, complications such as fat emboli and acute respiratory distress syndrome has been associated with reaming. The reaming irrigator aspirator (RIA) system provides concomitant irrigation and suction of the intramedullary contents and should therefore reduce reaming-associated complications.The aim of the study was to investigate cardiac functionaftermultiple trauma with regard to two different RIA devices (RIAI vs. RIAII). 15 male pigs were included in the study. Pigs received either sham treatment or multiple trauma (chest trauma, femur fracture, liver laceration and hemorrhagic shock), followed by intramedullary nailing after reaming with either RIAI or RIAII system (RIAII: reduced diameter of the reamer, improved control of irrigation and suction). Cardiac function was assessed by transesophageal echocardiography and systemic inflammation as well as local cardiac damage was examined. Pigs of both treatment groupsshowed impaired cardiac function, valvular insufficiency and cardiac damage. Systemic inflammationand local cardiac alterations were observed which might contribute to early myocardial damage in vivo.Multiple trauma including long-bone fracture and subsequent intramedullary reaming induces cardiac dysfunction and valvular insufficiency, which might be linked to both mechanical cardiac injuryand increased systemic inflammation. 6h after trauma there are less differences between RIAI and RIAII treatment with regard to post-traumatic cardiac consequences in multiple injured pigs, indicating no beneficial effect of RIAII over RIAI. This article is protected by copyright. All rights reserved

    Cardiac Depression in Pigs after Multiple Trauma - Characterization of Posttraumatic Structural and Functional Alterations

    Get PDF
    Abstract The purpose of this study was to define the relationship between cardiac depression and morphological and immunological alterations in cardiac tissue after multiple trauma. However, the mechanistic basis of depressed cardiac function after trauma is still elusive. In a porcine polytrauma model including blunt chest trauma, liver laceration, femur fracture and haemorrhage serial trans-thoracic echocardiography was performed and correlated with cellular cardiac injury as well as with the occurrence of extracellular histones in serum. Postmortem analysis of heart tissue was performed 72 h after trauma. Ejection fraction and shortening fraction of the left ventricle were significantly impaired between 4 and 27 h after trauma. H-FABP, troponin I and extracellular histones were elevated early after trauma and returned to baseline after 24 and 48 h, respectively. Furthermore, increased nitrotyrosine and Il-1β generation and apoptosis were identified in cardiac tissue after trauma. Main structural findings revealed alteration of connexin 43 (Cx43) and co-translocation of Cx43 and zonula occludens 1 to the cytosol, reduction of α-actinin and increase of desmin in cardiomyocytes after trauma. The cellular and subcellular events demonstrated in this report may for the first time explain molecular mechanisms associated with cardiac dysfunction after multiple trauma

    Cellular activation status in femoral shaft fracture hematoma following different reaming techniques – A large animal model

    No full text
    The local inflammatory impact of different reaming protocols in intramedullary nailing has been sparsely investigated. We examined the effect of different reaming protocols on fracture hematoma (FH) immunological characteristics in pigs. To do so, a standardized midshaft femur fracture was induced in adult male pigs. Fractures were treated with conventional reamed femoral nailing (group RFN, n = 6); unreamed femoral nailing (group UFN, n = 6); reaming with a Reamer Irrigator Aspirator device (group RIA, n = 12). Animals were observed for 6 h and FH was collected. FH-cell apoptosis and neutrophil receptor expression (Mac-1/CD11b and FcγRIII/CD16) were studied by flow cytometry and local temperature changes were analyzed. The study demonstrates that apoptosis-rates of FH-immune cells were significantly lower in group RIA (3.50 ± 0.53%) when compared with non-RIA groups: (group UFN 12.50 ± 5.22%, p = 0.028 UFN vs. RIA), (group RFN 13.30 ± 3.18%, p < 0.001, RFN vs. RIA). Further, RIA-FH showed lower neutrophil CD11b/CD16 expression when compared with RFN (mean difference of 43.0% median fluorescence intensity (MFI), p = 0.02; and mean difference of 35.3% MFI, p = 0.04, respectively). Finally, RIA induced a transient local hypothermia and hypothermia negatively correlated with both FH-immune cell apoptosis and neutrophil activation. In conclusion, immunologic changes observed in FH appear to be modified by certain reaming techniques. Irrigation during reaming was associated with transient local hypothermia, decreased apoptosis, and reduced neutrophil activation. Further study is warranted to examine whether the rinsing effect of RIA, specific tissue removal by reaming, or thermal effects predominantly determine local inflammatory changes during reaming.ISSN:1554-527XISSN:0736-026

    Leukotriene B4 indicates lung injury and on-going inflammatory changes after severe trauma in a porcine long-term model

    Get PDF
    Background: Recognizing patients at risk for pulmonary complications (PC) is of high clinical relevance. Migration of polymorphonuclear leukocytes (PMN) to inflammatory sites plays an important role in PC, and is tightly regulated by specific chemokines including interleukin (IL)−8 and other mediators such as leukotriene (LT)B4. Previously, we have reported that LTB4 indicated early patients at risk for PC after trauma. Here, the relevance of LTB4 to indicating lung integrity in a newly established long-term porcine severe trauma model (polytrauma, PT) was explored. Methods: mTwelve pigs (3 months old, 30 ± 5 kg) underwent PT including standardized femur fracture, lung contusion, liver laceration, hemorrhagic shock, subsequent resuscitation and surgical fracture fixation. Six animals served as controls (sham). After 72 h lung damage and inflammatory changes were assessed. LTB4 was determined in plasma before the experiment, immediately after trauma, and after 2, 4, 24 or 72 h. Bronchoalveolar lavage (BAL)-fluid was collected prior and after the experiment. Results: Lung injury, local gene expression of IL-8, IL-1β, IL-10, IL-18 and PMN-infiltration into lungs increased significantly in PT compared with sham. Systemic LTB4 increased markedly in both groups 4 h after trauma. Compared with declined plasma LTB4 levels in sham, LTB4 increased further in PT after 72 h. Similar increase was observed in BAL-fluid after PT. Conclusions: In a severe trauma model, sustained changes in terms of lung injury and inflammation are determined at day 3 post-trauma. Specifically, increased LTB4 in this porcine long-term model indicated a rapid inflammatory alteration both locally and systemically. The results support the concept of LTB4 as a biomarker for PC after severe trauma and lung contusion
    corecore