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ARTICLE INFO ABSTRACT

Keywords: Background: Recognizing patients at risk for pulmonary complications (PC) is of high clinical relevance.

LTB4 Migration of polymorphonuclear leukocytes (PMN) to inflammatory sites plays an important role in PC, and is

LE“kOtfien'e tightly regulated by specific chemokines including interleukin (IL) — 8 and other mediators such as leukotriene

?ﬂammkatlon (LT)B4. Previously, we have reported that LTB4 indicated early patients at risk for PC after trauma. Here, the
lomarker

relevance of LTB4 to indicating lung integrity in a newly established long-term porcine severe trauma model
(polytrauma, PT) was explored.

Methods: Twelve pigs (3 months old, 30 + 5kg) underwent PT including standardized femur fracture, lung
contusion, liver laceration, hemorrhagic shock, subsequent resuscitation and surgical fracture fixation. Six an-
imals served as controls (sham). After 72 h lung damage and inflammatory changes were assessed. LTB4 was
determined in plasma before the experiment, immediately after trauma, and after 2, 4, 24 or 72h.
Bronchoalveolar lavage (BAL)-fluid was collected prior and after the experiment.

Results: Lung injury, local gene expression of IL-8, IL-1f3, IL-10, IL-18 and PMN-infiltration into lungs increased
significantly in PT compared with sham. Systemic LTB4 increased markedly in both groups 4 h after trauma.
Compared with declined plasma LTB4 levels in sham, LTB4 increased further in PT after 72 h. Similar increase
was observed in BAL-fluid after PT.

Conclusions: In a severe trauma model, sustained changes in terms of lung injury and inflammation are de-
termined at day 3 post-trauma. Specifically, increased LTB4 in this porcine long-term model indicated a rapid
inflammatory alteration both locally and systemically. The results support the concept of LTB4 as a biomarker
for PC after severe trauma and lung contusion.
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oacetate esterase; COPD, chronic obstructive pulmonary disease; CVP, central venous pressure; CXCR, CXC chemokine receptor; DNA, Deoxyribonucleic acid; ELISA, enzyme-linked
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1. Introduction

Development of pulmonary complications such as pneumonia, em-
bolism, Acute Respiratory Distress Syndrome (ARDS) and other still
displays a major risk and remain major causes of long-term morbidity
and mortality in trauma patients [1,2]. The mortality in case of acute
lung injury in multiply traumatized patients is 10% [3,4]. However, the
treatment strategies are still based on clinical preventive procedures
such as protective ventilation and kinetic therapy [5,6]. Therefore, the
clinical definitions of pulmonary complications e.g. ARDS often remain
non-specific and subsequently under-diagnosed or under-treated due to
the lack of knowledge concerning the pathophysiology of lung injury,
pulmonary complications and repair mechanisms. Kannan et al. have
performed very high fidelity 2D and 3D simulations for accurately and
efficiently predicting and quantifying local and global injuries (caused
by trauma, hemorrhages, blasts) for organs like the brain and the lung
[7,8]. They were able to noninvasively "numerically penetrating" the
tissues, and reconstruct the optical properties the presence of water,
oxygenated and de-oxygenated blood [7,8]. These numerical non-
invasive measurements are then used to predict the extent and severity
of the organ hemorrhage/injury. With regard to clinical scenario, stu-
dies of potential biomarkers as reliable predictive parameters for lung
injury and pulmonary complications after trauma would be useful for
biologic confirmation of the clinical diagnosis in trauma patients.

In pulmonary complications polymorphonuclear leukocytes (PMN)
have been identified as important contributors to the pathogenesis.
PMN migrate after their systemic activation by e.g. interleukin (IL) -8
into the pulmonary interstitium, release proteolytic enzymes and in-
duce microvascular damage and harmful airway remodeling in lung
tissue, which is associated with poor survival [9-12]. Moreover, the
generation of inflammatory mediators including interleukin IL-8 plays
an important role in ARDS pathophysiology [13-16].

The proinflammatory lipid mediator Leukotriene (LT)B4 has been
originally discovered as a strong chemotactic factor, which exerts PMN
activating abilities and plays a crucial role in neutrophil migration
[17-20]. Several studies have reported elevated levels of LTB4 also in
bronchoalveolar lavage (BAL) fluid from patients with ARDS or other
inflammatory lung diseases such as COPD [21-24]. Moreover, the
evaluation of LTB4 and IL-8 has been described as useful prognostic
indices in patients with early phase ARDS after admission to the in-
tensive care unit [23,25]. With regard to trauma patients, the data is
sparse.

Previously, we have shown that high systemic levels of LTB4 in-
dicated patients at risk for imminent lung complications after poly-
trauma [26]. But it may assumed that IL-8 as well as LTB4 might be
directly involved in post-traumatic pulmonary inflammatory processes
by attracting PMN to the lung [13,27]. This is considered as one of the
main factors of interstitial inflammation in the lungs, extending the
transport distance for gas exchange. Recently, in vivo imaging has re-
vealed that LTB4 is required for neutrophil swarming in the extra-
vascular space of a damaged tissue [28]. Moreover, down-regulating
the surface expression of CXCR1/2 and BLT1 (receptors for IL-8 and
LTB4), significantly blocked IL-8-induced and LTB4-induced neutrophil
migration in vitro and in vivo as demonstrated in mice by intravital
microscopy in a model of airway inflammation [29].

The benefit of early identification of lung injury and pulmonary
complications in trauma patients is undoubted, but the prognostic value
and relevance of LTB4 is not fully elucidated, yet. Subsequently, the
aim of the present study was evaluating the capability of LTB4 to in-
dicate these processes in a long-term large animal polytrauma model
that simulates a clinically relevant scenario of polytrauma and sub-
sequent harmful pulmonary changes.
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2. Material and methods
2.1. Animals

All experiments were conducted in accordance with the federal
German law regarding the protection of animals and were approved by
the responsible government authority ("Landesamt fiir Natur, Umwelt
und Verbraucherschutz": LANUV-NRW, Germany: AZ TV-Nr.: 84-
02.04.2014. A265). Institutional Guidelines and the criteria in “Guide
for the Care and Use of Laboratory Animals” (Eighth Edition The
National Academies Press, 2011) were followed [30], and the study was
performed in accordance with the use and care of animals as reported in
consent with the ARRIVE guidelines [31]). Animal experiments were
performed at the Institute for Laboratory Animal Science &
Experimental Surgery, RWTH Aachen University, Germany.

Eighteen male German landrace pigs (Sus scrofa; 3 months old,
30 = 5 kg) from a disease-free barrier breeding facility were included in
this study. Before experimentation, the animals were fasted for over-
night having a free access to water. All animals underwent initial ex-
amination by a veterinarian before experimentation and were housed in
ventilated rooms and allowed to acclimatize to their surroundings for a
minimum of 7 days before surgery.

2.2. Experimental model

Twelve animals underwent polytrauma (PT) with standardized
femur fracture, unilateral blunt chest injury, liver laceration, hemor-
rhagic shock (40 mm Hg, 90 min), subsequent resuscitation and sur-
gical fracture fixation. Six non-traumatized animals receiving an-
esthesia, laparotomy, preparation of arterial, venous and urinary lines
served as controls (sham).

Animals were pre-medicated with an intramuscular application of
azaperone (Stresni™, Janssen, Germany) in a dose of 1 ml per 15 kg.
Anesthesia was induced with an intravenous injection of propofol
(3mg/kg) and orotracheal intubation followed (7.5 ch tube, Hi-Lo
Lanz™). During the study period of 72 h, anesthesia was maintained
with intravenous injection of propofol. The animals were ventilated on
volume control mode (Draeger, Evita, Liibeck, Germany) with room air
at a tidal volume setting of 6-8 ml/kg, positive end expiratory pressure
(PEEP) of 8 mm Hg (plateau pressure < 28 mm Hg), and pCO- of 35 —
45 mm Hg. Catheters were aseptically inserted in the external jugular
vein for administration of fluids, anesthesia and continuous monitoring
of central venous pressure (CVP, central venous catheter 4-Lumen
Catheter, 8.5 Fr., ArrowCatheter, Teleflex Medical, Germany), into the
right femoral vein to induce hemorrhage (3-Lumen hemodialysis, 12.0
Fr., ArrowCatheter, Teleflex Medical, Germany) and into the femoral
artery for blood pressure monitoring (4.0 Fr. arterial line catheter,
Vygon, Germany). A urinary catheter was placed in the bladder (12.0
Fr, Cystofix, Braun, Melsungen, Germany). Crystalloid fluid
(Sterofundin ISO”) was used for continuous fluid management (2 ml kg/
BW/h). The baseline measurements were acquired after instrumenta-
tion and an equilibration period.

The PT was induced as described previously [32]. Initially, prior
induction of trauma the inspiratory O, (FiO,) was defined at 21% and
the fluid administration was reduced to 10 ml/h. At this phase, the
animals were not prevented from hypothermia for the following he-
morrhagic shock period mimicking the pre-clinical scenario. Shortly
described, after placing the animal on the right side, femur fracture was
induced with a bolt shot on the right hind leg (Blitz-Kerner, turbocut
JOBB GmbH, Germany, 9x17, Dynamit Nobel AG, Troisdorf, Ger-
many). Placed back in the dorsal position, blunt thoracic trauma with a
bolt shot on the right dorsal lower thorax was induced. Thereafter, a
midline-laparotomy and uncontrolled bleeding for 30 s after crosswise
incision of the caudal liver lobe (4.5 X 4.5 cm). Using five sterile gauze-
compresses (10 X 10 cm) the liver was packed. Pressure-controlled he-
morrhagic shock using exsanguination from right femoral artery until a
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mean arterial blood pressure (MAP) of 40 + 5 mm Hg was reached and
maintained for 90 mins.

Resuscitation starting after hemorrhagic shock by adjusting FiO, to
baseline values, and re-infusing the withdrawn blood and additional
fluids (Sterofundin ISO°; 2 ml kg/BW/h). Rewarming was performed
using forced-air warming systems until normothermia (38.7-39.8 °C).

Thereafter, clinical treatment of open femur fracture was performed
according to established trauma guidelines. The intensive care and
complications management followed the standardized clinical protocols
according to the latest recommendations of the European Resuscitation
Council and Advanced Trauma Life Support (ATLS)[33,34]. Antibiotics
(Ceftriaxon® 2 g) were given before surgery and after every 24 h until
sacrifice. After the observational period the animals were euthanized,
and at baseline as well as at 72 h bronchoalveloar lavage (BAL) was
collected. After trauma (a.tr), 2h, 4h, 24 h and 72 h later blood was
collected. At 72 h lung tissue was harvested.

2.3. Histological examination of lung injury

After lung perfusion with 0.9% NaCl solution, one piece of both
lobes of the lung was removed for the RNA isolation. The remaining
lung was flushed and filled with 4% formalin for overnight fixation.
After paraffin embedding, lung samples were sectioned to 2-3 um and
stained with hematoxylin-eosin (HE). Determination of histological
damage was performed by an independent examiner (K.K.) from the
Institute of Veterinary Pathology, Justus Liebig University Giessen, who
evaluated the HE-stained lung sections for desquamation, dystelectasis/
atelectasis, emphysema, congestion, interstitial thickness/infiltration
and bronchial exsudate [35]. Each parameter was assessed according to
the degree of severity: 0 = not observed, 1 = mild, 2 = moderate and
3 = marked. Both lung lobes are included in the evaluation. The results
are represented as the mean of all scores.

2.4. Detection of polymorphonuclear leukocytes

Lung infiltration with PMN was evaluated by the chloroacetate es-
terase staining (CAE, 4% pararosanilin, 4% sodium nitrite and naphthol
solution) for 30 min at room temperature (RT) according to the man-
ufacturer's instructions (Naphthol AS-D Chloroacetate Specific Esterase
Kit, Sigma). Sections were counterstained with hematoxylin.
Polymorphonuclear leukocytes were determined by counting the
number of CAE positive cells in a total of 25 high power (400x) fields
per lung section per pig in a blinded manner as described before [36].
Both lung lobes are included in the evaluation. Data from each tissue
section were pooled to determine means.

2.5. Blood processing and analysis

Blood samples were obtained after trauma (a.tr), 2 h, 4 h, 24 h and
72h in prechilled ethylenediaminetetraacetid acid tubes (BD
Vacutainer, Bectom Dickinson Diagnostics, Aalst, Belgium) and kept on
ice. Blood was centrifuged at 2000 X g for 15 min at 4°C. The super-
natant was stored at —80°C until the batch sample analysis for LTB4
concentrations using the Leukotriene B4 ELISA Kit from abcam ac-
cording to manufacturer's instructions (Cambridge, UK). Blinded spe-
cimens were used for duplicate measurement of LTB4 levels. LTB4 was
determined by the laboratory of the Department of Trauma, Hand and
Reconstructive Surgery at the University Hospital of the Goethe
University Frankfurt.

2.6. LTB4 in the bronchoalveaolar lavage fluid

At baseline and at 72 h a cannula was located into the trachea and
the lungs were lavaged with 5 ml of saline 4 times (total: 20 ml). The
BAL fluid was centrifuged at 1100 g for 10 min at 4 °C. The supernatant
was removed and stored at —80°C until the batch sample analysis for
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LTB4 concentrations using the Leukotriene B4 ELISA Kit according to
manufacturer's instructions (abcam) as described above.

2.7. Ribonucleic acid (RNA) isolation, semi-quantitative reverse-
transcription—polymerase chain reaction (RT-PCR)

Total RNA of snap-frozen lung samples was isolated using the
RNeasy-system (Qiagen, Hilden, Germany) according to the manufac-
turer's instructions and as described previously [37]. Both lung lobes
are included in the evaluation. For DNA removal the RNase-Free DNase
Set was applied according to the manufacturer's instructions (Qiagen).
Both, quality and amount of the isolated RNA were determined pho-
tometrically using the NanoDrop ND-1000 device (NanoDrop Tech-
nologies, Wilmington, DE, USA). RNA was stored immediately after
isolation at —80°C. For the qRT-PCT, 100 ng of total lung RNA was
reversely transcribed using the Affinity script QPCR-cDNA synthesis kit
(Stratagene, La Jolla, CA, USA) following the manufacturer's instruc-
tions. qRT-PCR was carried out on a Stratagene MX3005p QPCR system
(Stratagene) to determine the mRNA expression of IL-8 and as reference
gene GAPDH using gene-specific primers for pig IL-8, IL-1f3, IL-10 and
IL-18 (IL-8: NM_213867, UniGene#: Ssc.658, Cat#: PPS00237A; IL-1f3:
NM_001005149, UniGene#: Ssc.28829, Cat#: PPS00015A; IL-10: NM_
214041, UniGene#: Ssc.148, Cat#: PPS00445B and IL-18: NM_213997,
UniGene#: Ssc.20, Cat#: PPS00399A) and pig GAPDH (NM_
001206359, UniGene#: Ssc.16135, Cat#: PPS00192A) purchased
from SABiosciences (SuperArray, Frederick, MD, USA). Sequences of
these primers are not available. PCR reaction was set up with 1x RT2
SYBR Green/Rox qPCR Master mix (SABiosciences) in a 25 pl volume
according to manufacturer's instructions. A two-step amplification
protocol consisting of initial denaturation at 95°C for 10 min followed
by 40 cycles with 15s denaturation at 95°C and 60 s annealing/ex-
tension at 60°C was chosen. In order to control the specificity of am-
plification products a melting-curve analysis was applied. The relative
gene expression of IL-8 was calculated using the comparative threshold-
cycle (CT) method (2 AACT method) as described previously by
Schmittgen and Livak [38]. Briefly, the amount of target mRNA in each
sample was normalized to the amount of GAPDH mRNA, to give ACT
and then to a calibrator consisting of samples obtained from the
sham_ctr]l group. The relative mRNA expression of target genes is pre-
sented as fold increase calculated in relation to sham_ctrl after nor-
malization to GAPDH in percentage (%).

2.8. Statistical analysis

Differences between the groups were compared using the Mann-
Whitney-U test. Changes in target gene expression were analyzed by
Wilcoxon matched-pair analysis followed by Bonferroni correction. A p
value of less than 0.05 was considered significant. Data are given as
mean * standard error of the mean (sem). All statistical analyses were
performed employing GraphPad Prism 5 (Graphpad Software, Inc., San
Diego, CA).

3. Results
3.1. Systemic and local LTB4 levels

The systemic baseline levels of LTB4 were comparable between the
sham and PT group and were at the detection limit (Fig. 1). At 4 h after
trauma, plasma LTB4 levels increased markedly in both groups, again to
comparable levels (sham: 380.10 = 64.17 vs. PT: 341.10 = 70.62 pg/
ml, respectively, Fig. 1). While the levels of LTB4 in the sham group
declined continuously to the baseline after 72 h, plasma LTB4 levels
increased further significantly in the PT group as compared to sham
(PT: 405.50 + 66.97 vs. sham: 209.40 + 56.27 pg/ml, respectively,
p < 0.05, Fig. 1).

The local LTB4 concentration in the BAL fluid was comparably low
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Fig. 1. Time course of mean concentrations of Leukotriene (LT) B 4 levels in plasma
samples (pg/ml). Blood samples were obtained before (0 h) trauma, after trauma (a.tr),
2h, 4h, 24 h and 72 h; sham: control group, polytrauma (PT): animals undergoing PT.
The results are represented as the mean + sem, *p < 0.05 vs. sham at 72 h.
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Fig. 2. Summary of mean concentrations of Leukotriene (LT)B4 levels (pg/ml) in
bronchoalveolar lavage (BAL) fluid. BAL fluid was collected before (0 h) trauma and 72 h
after trauma; sham: control group, polytrauma (PT): animals undergoing PT. The results
are represented as the mean * sem, *p < 0.05 vs. all.

in both, sham and PT group before trauma (Fig. 2). However, at 72 h
after trauma, LTB4 levels in BAL fluid increased significantly in the PT
group (54.12 = 16.07 pg/ml) compared to sham group, where LTB4
levels were at the detection limit of 11.70 pg/ml (p < 0.05, Fig. 2).

3.2. Histopathological changes in lung tissue after trauma

The lung injury score was significantly enhanced in the PT group
compared with the sham group (PT: 1.45 = 0.13 vs. sham: 0.37 + 0.18,
respectively, p < 0.05, Fig. 3). In general, the sections from PT animals
(Fig. 3) revealed areas of increased interstitial thickness compared to
sham group. Similarly, dyslectasis/atelectasis and emphysema were
more often observed in PT compared with sham (Fig. 3).

3.3. Local pro-inflammatory changes after trauma - IL-8 levels and lung
neutrophil accumulation

The semi-quantitative real-time PCR showed a significant increase
of IL-8 expression at 72 h in lung samples after trauma as compared to
the sham group (216.10 = 53.58 vs. 83.31 = 15.01, p < 0.05, Fig. 4A).
IL-18 and IL-10 showed a trend to increased levels after trauma, how-
ever this difference was not significant (Fig. 4B and C). Gene expression
of IL-1B did not change markedly.

Lung neutrophil infiltration increased to 2.38 = 0.22 cells per high
power field at 72h after trauma as compared to sham controls
(0.98 = 0.08 cells per high power field, p < 0.05, Fig. 5).

4. Discussion

Thoracic trauma can crucially deteriorate the outcome of trauma

28

Prostaglandins, Leukotrienes and Essential Fatty Acids 127 (2017) 25-31

Q 1.5
Q
O
(7]
ey
3, 1.0
IS
D
=
3 0.5

0.0—- T

sham PT

Fig. 3. Histological evaluation of lung damage after 72 h after trauma. Sham operated
animals underwent the same surgical procedures but polytrauma (PT) was not carried
out. Representative hematoxylin and eosin stained lung sections from sham (A) and PT
(B) groups are shown. Lung tissue was evaluated for desquamation, dyslectasis/atelec-
tasis, emphysema, congestion, interstitial thickness/infiltration and bronchial exsudate.
Each parameter was assessed according to the degree of severity: 0 = not observed, 1 =
mild, 2 = moderate and 3 = marked. The results are represented as the mean = sem of
all scores (Lung Injury Score, C), *p < 0.05 vs. sham.

patients [39,40]. Pulmonary complications including pneumonia, ARDS
and other can detrimentally influence the outcome after trauma
[1,5,41-43]. Due to the lack of reliable clinical biomarkers for pre-
dicting these pulmonary complications after trauma, the current treat-
ment strategies are based on clinical preventive procedures such as
protective ventilation and kinetic therapy [5,6,44,45]. Therefore, pul-
monary complications often remain non-specific and subsequently
under-diagnosed. In order to improve the clinical prediction of pul-
monary complications in trauma patients, both, understanding the
underlying pathophysiology and the biology of the repair mechanisms
as well as clinically reliable predictive biomarkers are necessary [46].
Moreover, improvement and development of translational trauma
models are essential [47]. In the present study, we have evaluated the
reliability of the clinically described biomarker LTB4 to indicate the
risk for late lung injury and pulmonary complications in the long-term
porcine severe polytrauma model.

The development of pulmonary complications after trauma has been
closely associated with an excessive systemic and local immune reac-
tion [13,48,49]. This complex immune response to trauma is char-
acterized by the release of several inflammatory mediators including IL-
8, IL-1f, IL-10 and IL-18 but also neutrophil migration into the lung
[13,48-53]. Persistent accumulation of neutrophils in the lung has been
linked to pulmonary damage and poor survival via an interstitial in-
flammation, increase of interstitial space and limitation of the oxygen
transport [9-12]. In line with these reports, in the present study, we can
show for the first time in a porcine animal model, that the trauma-
induced lung injury (depicted by increased LIS, Fig. 3) is associated
with increased expression of proinflammatory IL-8 but also enhanced
infiltration of the lungs with neutrophils (Figs. 4 and 5). As rationale for
an increased neutrophil accumulation via IL-8, it has been demon-
strated that IL-8 might be directly involved in post-traumatic pul-
monary inflammatory processes by attracting PMN to the lung [13].
More recently, it has been shown that down-regulating the surface
expression of the IL-8 receptors CXCR1/2 significantly blocked IL-8-
induced neutrophil migration in vitro and in vivo in a model of pul-
monary inflammation [29]. Other biomarkers of inflammatory pul-
monary complications after trauma as IL-1f, IL-10 and IL-18 did not
show significant changes (Fig. 4). However, IL-18 demonstrated a clear
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Fig. 5. Lung neutrophil infiltration at 72 h after trauma. Sham operated animals under-
went the same surgical procedures but polytrauma (PT) was not carried out. Neutrophils
in lung sections were identified by chloroacetate esterase (CAE) cytochemistry.
Representative CAE stained lung sections from sham (A) and PT (B) groups are shown.
CAE positive cells were counted in 25 high power fields. The results are given as the
mean * sem of CAE positive cells / high power field (C), *p < 0.05 vs. sham.

trend to increased levels after trauma, indicating at findings from others
that have represented the importance of IL-18 as a promising bio-
markers for predicting morbidity and mortality of ARDS [52]. Similar
findings were reported by Dolinay et al. (2012), showing that patients
with trauma- or sepsis-induced ARDS had increased IL-18 levels, which
correlated with increased in-hospital mortality [54]. Additional studies
to validate these findings are needed.

Moreover, both, local and systemic levels of LTB4, one of the
strongest chemoattractive agents for neutrophils have been associated
with the onset of pulmonary inflammation in the present study
[17-19]. LTB4 levels have been shown to correlate with the number of
neutrophils recovered from the BAL fluid of patients with ARDS [55].
Kalsotra et al. have shown that in rats suffering from brain contusion
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Fig. 4. Lung interleukin (IL)—8 (A) IL-18
(B), IL-10 (C) and IL-1f (D) gene expression
at 72 h after trauma. Sham operated animals
underwent the same surgical procedures but
polytrauma (PT) was not carried out. After
normalization to GAPDH expression, gene
expression was measured as fold increase
compared to the corresponding sham oper-
ated ctrl group. The results are represented
as the mean =+ sem of all scores, *p < 0.05
vs. sham.

0.0649

sham I5T

sham PT

the amount of inflammatory cells in the lung as well as the in-
trapulmonary production of LTB4 have been increased and blamed for
pulmonary complications after blunt brain injuries [56]. In line with
these findings, lately increased LTB4 levels in the BAL fluid were as-
sociated with enhanced pulmonary infiltration with neutrophils as well
as IL-8 expression. Previously, a close association of increased IL-8 and
LTB4 levels has been proposed as useful prognostic indices in patients
with early phase ARDS after admission to the intensive care unit
[23,25]. Nonetheless, the role of LTB4 in trauma has not been fully
elucidated. Auner et al. have reported a close correlation of early in-
creased circulating levels of LTB4 with the incidence of pulmonary
complications in polytrauma patients [26]. According to this clinical
study, not only the local BAL fluid as reported above, but also the
plasma levels of LTB4 have been increased three days after trauma in
the established porcine model. This data underlines that plasma LTB4
levels may be useful for the diagnosis of pulmonary complications after
polytrauma. Summarized, locally increased LTB4 levels in BAL fluid
may promote pulmonary neutrophil immigration enhancing the
harmful proinflammatory processes underlying pulmonary complica-
tions. On the other hand, increased plasma LTB4 levels after 72 h may
be used as indicators for the above mentioned deteriorating pulmonary
changes after polytrauma.

Interestingly, a systemic LTB4 peak emerging four hours after
trauma has been detected in both, sham and polytrauma group.
However, we assume that this early peak is caused by the intubation
and ventilation (barotrauma) procedures.

Our study has several limitations, maybe one of most relevant
constitutes the assay for the determination of LTB4. Lipid mediators
employ various methods for their determination including liquid
chromatography-ultraviolet-tandem mass spectrometry (LCUV-MS/
MS), gas chromatography-mass spectrometry (GC-MS), computer-based
automated systems equipped with databases and novel searching al-
gorithms, and ELISA. In the underlying study, we have chosen the
ELISA technique, though the LC-MS/MS is a very powerful and more
sensitive and specific technique for highly multiplexed protein quanti-
fication and differentiation [57]. ELISA certainly has its specificity
limitations due to used detection antibodies. And though both methods
are applicable for e.g. LTB4 determination, the current field of highly
interesting oxidative lipidomics mostly rely on LC-MS/MS techniques
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[58]. Therefore, for future studies, samples should be evaluated or
analyzed by the LC-MS/MS technique, since MS/MS with LC is more
reliable and sensitive method to identify the quantity of LTB4.

Furthermore, it is known that post-traumatic response includes not
only the inflammatory components but also changes in lipid mediators.
Therefore, it is important to gain more detailed information on the
involved molecules and mechanisms controlling the post-injury re-
sponse and its resolution. Several additional lipid mediators as re-
solvins, lipoxins, maresins or protectins such as prostaglandin F2alpha,
resolving E1, D5, and 17R-protectin D1 play an important role during
resolution of inflammation and regeneration, and have not been ad-
dressed in our study [58-60]. Recent studies indicate at their critical
importance not only in health and diseases, but in those conditions that
are related to inflammation and resolution occurring after trauma as
well [60,61]. Therefore, analyses of additional lipid mediators in the
setting of trauma and post-traumatic complications is a daunting but
necessary task for future studies.

Our data demonstrate 1. a clinically relevant severe trauma model
showing lung injury and inflammatory changes, which are typical for
pulmonary complications, and 2. a significant secondary increase of
LTB4 in this porcine long-term model, which is a clinically described
early biomarker for patients at risk for pulmonary complications after
severe trauma. It may be assumed that LTB4 is part of the proin-
flammatory response after lung contusion in polytrauma, disturbing gas
exchange and increasing the risk for subsequent infections. These
findings could be used to further monitor and improve the use of pre-
ventive therapies for post-traumatic pulmonary complications in future
prospective studies.

5. Conclusions

LTB4 rises locally and systemically with increasing lung injury after
trauma in the porcine polytrauma model.

Local inflammatory markers (IL-8 expression and PMN infiltration)
are increased after trauma in the porcine polytrauma model.

LTB4 seems to be a potential biomarker to indicate lung injuries and
on-going inflammatory changes after polytrauma not only in human
patients but in the porcine model as well.
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