176 research outputs found

    Systematic review on spheroids from adipose‐derived stem cells: Spontaneous or artefact state?

    Get PDF
    Three‐dimensional (3D) cell cultures represent the spontaneous state of stem cells with specific gene and protein molecular expression that are more alike the in vivo condition. In vitro two‐dimensional (2D) cell adhesion cultures are still commonly employed for various cellular studies such as movement, proliferation and differentiation phenomena; this procedure is standardized and amply used in laboratories, however their representing the original tissue has recently been subject to questioning. Cell cultures in 2D require a support/substrate (flasks, multiwells, etc.) and use of fetal bovine serum as an adjuvant that stimulates adhesion that most likely leads to cellular aging. A 3D environment stimulates cells to grow in suspended aggregates that are defined as “spheroids.” In particular, adipose stem cells (ASCs) are traditionally observed in adhesion conditions, but a recent and vast literature offers many strategies that obtain 3D cell spheroids. These cells seem to possess a greater ability in maintaining their stemness and differentiate towards all mesenchymal lineages, as demonstrated in in vitro and in vivo studies compared to adhesion cultures. To date, standardized procedures that form ASC spheroids have not yet been established. This systematic review carries out an in‐depth analysis of the 76 articles produced over the past 10 years and discusses the similarities and differences in materials, techniques, and purposes to standardize the methods aimed at obtaining ASC spheroids as already described for 2D cultures

    Nonlinear absorption and gain in InGaAs/GaAs quantum wells

    Get PDF
    We present a detailed study of the excitonic nonlinearities in InGaAs/GaAs multiple quantum wells based on both stationary and transient pump-and-probe transmission spectroscopy. Bleaching of the excitonic resonance and free carrier gain have been observed. A quantitative analysis of the observed nonlinearity is provided by means of a rigorous solution of the Bethe–Salpeter equation for the investigated heterostructures

    Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases

    Get PDF
    The aim of the present investigation was to evaluate the influence of liposome formulation on the ability of vesicles to penetrate a pathological mucus model obtained from COPD affected patients in order to assess the potential of such vesicles for the treatment of chronic respiratory diseases by inhalation. Therefore, Small Unilamellar Liposomes (PLAIN-LIPOSOMEs), PluronicŸ F127- surface modified liposomes (PF-LIPOSOMEs) and PEG 2000PE-surface modified liposomes (PEG-LIPOSOMEs) were prepared using the micelle-to-vesicle transition (MVT) method and beclomethasone dipropionate (BDP) as model drug. The obtained liposomes showed diameters in the range of 40-65 nm, PDI values between 0.25-0.30 and surface electric charge essentially close to zero. The encapsulation efficiency was found to be dependent on the BDP/lipid ratio used and, furthermore, BDP-loaded liposomes were stable in size both at 37°C and at 4°C. All liposomes were not cytotoxic on H441 cell line as assessed by the MTT assay. The liposome uptake was evaluated through a cytofluorimetric assay that showed a non-significant reduction in the internalization of PEG-LIPOSOMEs as compared with PLAIN-LIPOSOMEs. The penetration studies of mucus from COPD patients showed that the PEG-LIPOSOMEs were the most mucuspenetrating vesicles after 27 hours. In addition, PEG- and PF-LIPOSOMEs did not cause any effect on bronchoalveolar lavage fluid proteins after aerosol administration in the mouse. The results highlight that PEG-LIPOSOMEs show the most interesting features in terms of penetration through the pathologic sputum, uptake by airway epithelial cells and safety profile

    Combination therapy with aliskiren versus ramipril or losartan added to conventional therapy in patients with type 2 diabetes mellitus, uncontrolled hypertension and microalbuminuria.

    Get PDF
    Hypothesis/Introduction: The aim of this study was to assess the antihypertensive efficacy and safety of aliskiren versus ramipril or losartan in hypertensive patients with type 2 diabetes mellitus, microalbuminuria and uncontrolled hypertension, despite the use of optimal conventional antihypertensive therapy. Materials and methods: In this open-label active comparator study, 126 patients were randomly assigned to receive 24 weeks of additional therapy with aliskiren (Group A) or either losartan or ramipril (Group B), according to whether a patient was already treated with an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker, respectively. Results: After 24 weeks, both treatment groups experienced a significant reduction of systolic blood pressure (−11.37% and −8.47%, respectively; both p <0.001 vs . baseline) and diastolic blood pressure levels (−10.67% and −9.28%, respectively; both p <0.001 vs . baseline), with a greater reduction of mean systolic values in Group A compared with Group B ( p <0.001). Furthermore, after six months microalbuminuria was significantly decreased in both treatment groups (−67.62% and −49.1%, respectively; both p <0.001), with a reduction rate in Group A significantly higher than in Group B ( p <0.001). Conclusions: The addition of aliskiren to optimal conventional therapy provided a higher reduction of blood pressure and urinary albumin excretion when compared with the addition of losartan or ramipril

    Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells

    Get PDF
    In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-ÎșB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms

    Cyto/Biocompatibility of Dopamine Combined with the Antioxidant Grape Seed-Derived Polyphenol Compounds in Solid Lipid Nanoparticles

    Get PDF
    none10The loss of nigrostriatal neurons containing dopamine (DA) together with the “mitochondrial dysfunction” in midbrain represent the two main causes related to the symptoms of Parkinson’s disease (PD). Hence, the aim of this investigation is to co-administer the missing DA and the antioxidant grape seed-derived proanthocyanidins (grape seed extract, GSE) in order to increase the levels of the neurotransmitter (which is unable to cross the Blood Brain Barrier) and reducing the oxidative stress (OS) related to PD, respectively. Methods: For this purpose, we chose Solid Lipid Nanoparticles (SLN), because they have been already proven to increase DA uptake in the brain. DA-SLN adsorbing GSE (GSE/DA-SLN) were formulated and subjected to physico-chemical characterization, and their cytocompatibility and protection against OS were examined. Results: GSE was found on SLN surface and release studies evidenced the efficiency of GSE in preventing DA autoxidation. Furthermore, SLN showed high mucoadhesive strength and were found not cytotoxic to both primary Olfactory Ensheathing and neuroblastoma SH-SY5Y cells by MTT test. Co-administration of GSE/DA-SLN and the OS-inducing neurotoxin 6-hydroxydopamine (100 ÎŒM) resulted in an increase of SH-SY5Y cell viability. Conclusions: Hence, SLN formulations containing DA and GSE may constitute interesting candidates for non-invasive nose-to-brain delivery.openAdriana Trapani, Lorenzo Guerra, Filomena Corbo, Stefano Castellani, Enrico Sanna, Loredana Capobianco, Anna Grazia Monteduro, Daniela Erminia Manno, Delia Mandracchia, Sante Di Gioia and Massimo ConeseTrapani, Adriana; Guerra, Lorenzo; Corbo, Filomena; Castellani, Stefano; Sanna, Enrico; Capobianco, Loredana; Monteduro, ANNA GRAZIA; Manno, Daniela Erminia; Mandracchia, Delia; Di Gioia and Massimo Conese, Sant

    Oxidized Alginate Dopamine Conjugate: In Vitro Characterization for Nose‐to‐Brain Delivery Application

    Get PDF
    Background: The blood–brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of Substantia Nigra mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery. Methods: A Schiff base was designed to connect oxidized polymeric backbone to DA and both AlgOX and AlgOX-DA were characterized in terms of Raman, XPS, FT-IR, and 1H- NMR spectroscopies, as well as in vitro mucoadhesive and release tests. Results: Data demonstrated that AlgOX-DA was the most mucoadhesive material among the tested ones and it released the neurotransmitter in simulated nasal fluid and in low amounts in phosphate buffer saline. Results also demonstrated the capability of scanning near-field optical microscopy to study the structural and fluorescence properties of AlgOX, fluorescently labeled with fluorescein isothiocyanate microstructures. Interestingly, in SH-SY5Y neuroblastoma cell line up to 100 ÎŒg/mL, no toxic effect was derived from AlgOX and AlgOX-DA in 24 h. Conclusions: Overall, the in vitro performances of AlgOX and AlgOX-DA conjugates seem to encourage further ex vivo and in vivo studies in view of nose-to-brain administratio

    Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions

    Get PDF
    Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases

    Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia

    Get PDF
    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-ÎșB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF
    • 

    corecore