51 research outputs found

    Tuning the Aggregation of Titanate Nanowires in Aqueous Dispersions

    Get PDF
    Electrophoretic and dynamic light scattering (DLS) measurements revealed that aggregation in aqueous dispersion of titanate nanowires (TiONWs) can be tuned by poly(diallyldimethylammonium) chloride (PDADMAC) polyelectrolyte. The nanowires possessed negative charge under alkaline conditions which was compensated by the oppositely charged PDADMAC adsorbed on the surface. Such adsorption led to charge neutralization and subsequent charge reversal at the appropriate polyelectrolyte doses. The dispersions were stable at low PDADMAC concentration where the TiONWs possessed negative charge. However, fast aggregation of the nanowires occurred close to the charge neutralization point where the overall charge of the particles was zero. Charge inversion at high polyelectrolyte doses gave rise to restabilization of the samples and slow aggregation of the TiONWs even at higher ionic strengths where the original bare TiONW dispersions were unstable. The colloid stability of the bare nanowires can be explained well qualitatively by the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory; however, polyelectrolyte adsorption led to additional patch-charge attractions and osmotic repulsion between the particles. On the basis of the knowledge generated by the present work, experimental conditions (e.g., salt level, polyelectrolyte, and particle concentrations) can be adjusted in order to design stable and processable aqueous dispersions of TiONWs for further applications

    Coregulated Genes Link Sulfide:Quinone Oxidoreductase and Arsenic Metabolism in Synechocystis sp. Strain PCC6803

    Get PDF
    Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis. Although Synechocystis sp. strain PCC6803 is an obligate photoautotrophic cyanobacterium that grows via oxygenic photosynthesis, we discovered that specific genes are activated in the presence of sulfide or arsenite to exploit the energy potentials of these chemicals. These genes form an operon that we termed suoRSCT, located on a transposable element of type IS4 on the plasmid pSYSM of the cyanobacterium. suoS (sll5036) encodes a light-dependent, type I sulfide:quinone oxidoreductase. The suoR (sll5035) gene downstream of suoS encodes a regulatory protein that belongs to the ArsR-type repressors that are normally involved in arsenic resistance. We found that this repressor has dual specificity, resulting in 200-fold induction of the operon upon either arsenite or sulfide exposure. The suoT gene encodes a transmembrane protein similar to chromate transporters but in fact functioning as an arsenite importer at permissive concentrations. We propose that the proteins encoded by the suoRSCT operon might have played an important role under anaerobic, reducing conditions on primordial Earth and that the operon was acquired by the cyanobacterium via horizontal gene transfer

    Haptoglobin Polymorphism: A Novel Genetic Risk Factor for Celiac Disease Development and Its Clinical Manifestations

    Get PDF
    Background: Haptoglobin (Hp) α-chain alleles 1 and 2 account for 3 phenotypes that may influence the course of inflammatory diseases via biologically important differences in their antioxidant, scavenging, and immunomodulatory properties. Hp1-1 genotype results in the production of small dimeric, Hp2-1 linear, and Hp2-2 cyclic polymeric haptoglobin molecules. We investigated the haptoglobin polymorphism in patients with celiac disease and its possible association to the presenting symptoms. Methods: We studied 712 unrelated, biopsy-proven Hungarian celiac patients (357 children, 355 adults; severe malabsorption 32.9%, minor gastrointestinal symptoms 22.8%, iron deficiency anemia 9.4%, dermatitis herpetiformis 15.6%, silent disease 7.2%, other 12.1%) and 384 healthy subjects. We determined haptoglobin phenotypes by gel electrophoresis and assigned corresponding genotypes. Results: Hp2-1 was associated with a significant risk for celiac disease (P = 0.0006, odds ratio [OR] 1.54, 95% CI 1.20–1.98; prevalence 56.9% in patients vs 46.1% in controls). It was also overrepresented among patients with mild symptoms (69.2%) or silent disease (72.5%). Hp2-2 was less frequent in patients than in controls (P = 0.0023), but patients having this phenotype were at an increased risk for severe malabsorption (OR 2.21, 95% CI 1.60–3.07) and accounted for 45.3% of all malabsorption cases. Celiac and dermatitis herpetiformis patients showed similar haptoglobin phenotype distributions. Conclusions: The haptoglobin polymorphism is associated with susceptibility to celiac disease and its clinical presentations. The predominant genotype in the celiac population was Hp2-1, but Hp2-2 predisposed to a more severe clinical course. The phenotype-dependent effect of haptoglobin may result from the molecule’s structural and functional properties

    Probing pattern and dynamics of disulfide bridges using synthesis and NMR of an ion channel blocker peptide toxin with multiple diselenide bonds

    Get PDF
    Anuroctoxin (AnTx), a 35-amino-acid scorpion toxin containing four disulfide bridges, is a high affinity blocker of the voltage-gated potassium channel Kv1.3, but also blocks Kv1.2. To improve potential therapeutic use of the toxin, we have designed a double substituted analog, N17A/F32T-AnTx{,} which showed comparable Kv1.3 affinity to the wild-type peptide{,} but also a 2500-fold increase in the selectivity for Kv1.3 over Kv1.2. In the present study we have achieved the chemical synthesis of a Sec-analog in which all cysteine (Cys) residues have been replaced by selenocysteine (Sec) forming four diselenide bonds. To the best of our knowledge this is the first time to replace{,} by chemical synthesis{,} all disulfide bonds with isosteric diselenides in a peptide/protein. Gratifyingly{,} the key pharmacological properties of the Sec-N17A/F32T-AnTx are retained since the peptide is functionally active. We also propose here a combined experimental and theoretical approach including NOE- and 77Se-based NMR supplemented by MD simulations for conformational and dynamic characterization of the Sec-N17A/F32T-AnTx. Using this combined approach allowed us to attain unequivocal assignment of all four diselenide bonds and supplemental MD simulations allowed characterization of the conformational dynamics around each disulfide/diselenide bridge

    Gyermekkori pancreatitis. A Magyar Hasnyalmirigy Munkacsoport bizonyitekon alapulo kezelesi iranyelvei.

    Get PDF
    Pediatric pancreatitis is a rare disease with variable etiology. In the past 10-15 years the incidence of pediatric pancreatitis has been increased. The management of pediatric pancreatitis requires up-to-date and evidence based management guidelines. The Hungarian Pancreatic Study Group proposed to prepare an evidence based guideline based on the available international guidelines and evidences. The preparatory and consultation task force appointed by the Hungarian Pancreatic Study Group translated and complemented and/or modified the international guidelines if it was necessary. In 8 topics (diagnosis; etiology; prognosis; imaging; therapy; biliary tract management; complications; chronic pancreatitis) 50 relevant clinical questions were defined. (Evidence was classified according to the UpToDate(R) grading system. The draft of the guidelines was presented and discussed at the consensus meeting on September 12, 2014. All clinical questions were accepted with total (more than 95%) agreement. The present Hungarian Pancreatic Study Group guideline is the first evidence based pediatric pancreatitis guideline in Hungary. This guideline provides very important and helpful data for tuition of pediatric pancreatitis in everyday practice and establishing proper finance and, therefore, the authors believe that these guidelines will widely serve as a basic reference in Hungary. Orv. Hetil., 2015, 156(8), 308-325

    Identification of herpesvirus transcripts from genomic regions around the replication origins

    Get PDF
    Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a ‘super regulatory center’ in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries

    Measurement of inositol 1,4,5-trisphosphate in living cells using an improved set of resonance energy transfer-based biosensors

    Get PDF
    Improved versions of inositol-1,4,5-trisphosphate (InsP3) sensors were created to follow intracellular InsP3 changes in single living cells and in cell populations. Similar to previous InsP3 sensors the new sensors are based on the ligand binding domain of the human type-I InsP3 receptor (InsP3R-LBD), but contain a mutation of either R265K or R269K to lower their InsP3 binding affinity. Tagging the InsP3R-LBD with N-terminal Cerulean and C-terminal Venus allowed measurement of Ins P3 in single-cell FRET experiments. Replacing Cerulean with a Luciferase enzyme allowed experiments in multi-cell format by measuring the change in the BRET signal upon stimulation. These sensors faithfully followed the agonist-induced increase in InsP3 concentration in HEK 293T cells expressing the Gq-coupled AT1 angiotensin receptor detecting a response to agonist concentration as low as 10 pmol/L. Compared to the wild type InsP3 sensor, the mutant sensors showed an improved off-rate, enabling a more rapid and complete return of the signal to the resting value of InsP3 after termination of M3 muscarinic receptor stimulation by atropine. For parallel measurements of intracellular InsP3 and Ca2+ levels in BRET experiments, the Cameleon D3 Ca2+ sensor was modified by replacing its CFP with luciferase. In these experiments depletion of plasma membrane PtdIns(4,5)P2 resulted in the fall of InsP3 level, followed by the decrease of the Ca2+-signal evoked by the stimulation of the AT1 receptor. In contrast, when type-III PI 4-kinases were inhibited with a high concentration of wortmannin or a more specific inhibitor, A1, the decrease of the Ca2+-signal preceded the fall of InsP3 level indicating an InsP3-, independent, direct regulation of capacitative Ca2+ influx by plasma membrane inositol lipids. Taken together, our results indicate that the improved InsP3 sensor can be used to monitor both the increase and decrease of InsP3 levels in live cells suitable for high-throughput BRET applications. © 2015, Public Library of Science. All rights reserved

    Detection and isolation of cell-derived microparticles are compromised by protein complexes due to shared biophysical parameters

    Full text link
    Numerous diseases, recently reported to associate with elevated microvesicle/microparticle (MP) counts, have also long been known to be characterized by accelerated immune complex (IC) formation. The goal of this study was to investigate the potential overlap between parameters of protein complexes (e.g. ICs or avidin-biotin complexes) and MPs, which might perturb detection and/or isolation of MPs. In this work, after comprehensive characterization of MPs by electron microscopy, atomic force microscopy, dynamic light scattering analysis and flow cytometry, for the first time we drive attention to the fact that protein complexes, especially insoluble ICs, overlap in biophysical properties (size, light scattering, sedimentation) with MPs. This, in turn, affects MP quantification by flow cytometry and purification by differential centrifugation, especially in diseases in which IC formation is common, including not only autoimmune diseases, but also hematological disorders, infections and cancer. These data may necessitate reevaluation of certain published data on patient-derived MPs, and contribute to correct the clinical laboratory assessment of the presence and biological functions of MPs in health and disease
    corecore