1,853 research outputs found
Las ovejas palmeras: una raza en peligro de extinción
Las Islas Canarias a pesar de ser un territorio relativamente de poca extensión y de haber tenido con la Ley de Puertos Francos la posibilidad de un gran comercio exterior, que ha permitido a los ganaderos la importación de multitud de razas de animales domésticos seleccionados, cuentan todavía con una interesante representación de razas autóctonas. Estos animales han resistido de distinta forma la presión que sobre ellas han ejercido otras razas selectas y la intensificación de la producción ganadera tan generaliza en los últimos años. De todos ellos, la raza Ovina Palmero, a pesar de los esfuerzos del Excmo. Cabildo Insular de la Palma y la Consejería de Agricultura, Pesca y Alimentación, se encuentra en una situación extrema y muy crítica desde el punto de vista de su conservación debido a su reducidísimo número de ejemplares. Este trabajo pretende en cierta medida dar a conocer las características de estos animales, sus posibilidades, y sobre todo, despertar el interés para su recuperación y posterior conservación, atendiendo a que es responsabilidad de todos nosotros que no se pierda parte de nuestra cultura e historia
Application of mineralogical, petrological and geochemical tools for evaluating the palaeohdrogeological evolution of the PADAMOT study sites
The role of Work Package (WP) 2 of the PADAMOT project – ‘Palaeohydrogeological Data
Measurements’ - has been to study late-stage fracture mineral and water samples from
groundwater systems in Spain, Sweden, United Kingdom and the Czech Republic, with the aim
of understanding the recent palaeohydrogeological evolution of these groundwater systems. In
particular, the project sought to develop and evaluate methods for obtaining information about
past groundwater evolution during the Quaternary (about the last 2 million years) by examining
how the late-stage mineralization might record mineralogical, petrographical and geochemical
evidence of how the groundwater system may have responded to past geological and
climatological changes.
Fracture-flow groundwater systems at six European sites were studied:
• Melechov Hill, in the Bohemian Massif of the Czech Republic: a shallow (0-100 m)
dilute groundwater flow system within the near-surface weathering zone in fractured
granitic rocks;
• Cloud Hill, in the English Midlands: a (~100 m) shallow dilute groundwater flow system
in fractured and dolomitized Carboniferous limestone;
• Los Ratones, in southwest Spain: an intermediate depth (0-500 m) dilute groundwater
flow system in fractured granitic rocks;
• Laxemar, in southeast Sweden: a deep (0-1000 m) groundwater flow system in fractured
granitic rocks. This is a complex groundwater system with potential recharge and
flushing by glacial, marine, lacustrine and freshwater during the Quaternary;
• Sellafield, northwest England: a deep (0-2000 m) groundwater flow system in fractured
Ordovician low-grade metamorphosed volcaniclastic rocks and discontinuous
Carboniferous Limestone, overlain by a Permo-Triassic sedimentary sequence with
fracture and matrix porosity. This is a complex coastal groundwater system with deep
hypersaline sedimentary basinal brines, and deep saline groundwaters in crystalline
basement rocks, overlain by a shallow freshwater aquifer system. The site was glaciated
several times during the Quaternary and may have been affected by recharge from glacial
meltwater;
• Dounreay, northeast Scotland: a deep (0-1400 m) groundwater flow system in fractured
Precambrian crystalline basement overlain by fractured Devonian sedimentary rocks.
This is within the coastal discharge area of a complex groundwater system, comprising
deep saline groundwater hosted in crystalline basement, overlain by a fracture-controlled
freshwater sedimentary aquifer system. Like Sellafield, this area experienced glaciation
and may potentially record the impact of glacial meltwater recharge.
In addition, a study has been made of two Quaternary sedimentary sequences in Andalusia in
southeastern Spain to provide a basis of estimating the palaeoclimatic history of the region that
could be used in any reconstruction of the palaeoclimatic history at the Los Ratones site:
• The Cúllar-Baza lacustrine sequence records information about precipitation and
palaeotemperature regimes, derived largely from the analysis of the stable isotope (δ18O
and δ13C) signatures from biogenic calcite (ostracod shells).
• The Padul Peat Bog sequence provided information on past vegetation cover and
palaeogroundwater inputs based on the study of fossil pollen and biomarkers as proxies
for past climate change.
Following on from the earlier EC 4th Framework EQUIP project, the focus of the PADAMOT
studies has been on calcite mineralization. Calcite has been identified as a late stage mineral, closely associated with hydraulically-conductive fractures in the present-day groundwater
systems at the Äspö-Laxemar, Sellafield, Dounreay and Cloud Hill sites. At Los Ratones and
Melechov sites late-stage mineralization is either absent or extremely scarce, and both the
quantity and fine crystal size of any late-stage fracture mineralization relevant to Quaternary
palaeohydrogeological investigations is difficult to work with. The results from the material
investigated during the PADAMOT studies indicate that the fracture fillings at these sites are
related to hydrothermal activity, and so do not have direct relevance as Quaternary indicators.
Neoformed calcite has not been found at these two sites at the present depth of the investigations.
Furthermore, the HCO3
- concentration in all the Los Ratones groundwaters is mainly controlled
by complex carbonate dissolution. The carbonate mineral saturation indices do not indicate
precipitation conditions, and this is consistent with the fact that neoformed calcite, ankerite or
dolomite have not been observed petrographically
Necessary Optimality Conditions for a Dead Oil Isotherm Optimal Control Problem
We study a system of nonlinear partial differential equations resulting from
the traditional modelling of oil engineering within the framework of the
mechanics of a continuous medium. Recent results on the problem provide
existence, uniqueness and regularity of the optimal solution. Here we obtain
the first necessary optimality conditions.Comment: 9 page
Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties
We present a study on the magnetic properties of naked and silica-coated
Fe3O4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as
heating agents was assessed through specific power absorption (SPA)
measurements as a function of particle size and shape. The results show a
strong dependence of the SPA with the particle size, with a maximum around 30
nm, as expected for a Neel relaxation mechanism in single-domain particles. The
SiO2 shell thickness was found to play an important role in the SPA mechanism
by hindering the heat outflow, thus decreasing the heating efficiency. It is
concluded that a compromise between good heating efficiency and surface
functionality for biomedical purposes can be attained by making the SiO2
functional coating as thin as possible.Comment: 15 pages, 7 figures, 2 table
How well is Patella vulgata Linnaeus 1758 reflecting changes in sea surface temperatures (SST)? First results using living and archaeological samples from Northern Spain
Human populations have been exploiting coastal regions in different parts of the planet, at least since the Middle Palaeolithic. In Cantabrian Spain, the study of the exploitation of molluscs and shell middens formation during the late Pleistocene and early Holocene has shown the importance of these resources in human diets, being one of the most commonly collected species the limpet Patella vulgata which is present from the upper Palaeolithic to the Neolithic (ca. 40,000-5700 cal BP)
The holographic dark energy in non-flat Brans-Dicke cosmology
In this paper we study cosmological application of holographic dark energy
density in the Brans-Dicke framework. We employ the holographic model of dark
energy to obtain the equation of state for the holographic energy density in
non-flat (closed) universe enclosed by the event horizon measured from the
sphere of horizon named . Our calculation show, taking
for the present time, the lower bound of is -0.9. Therefore it is impossible to have
crossing -1. This implies that one can not generate phantom-like equation of
state from a holographic dark energy model in non-flat universe in the
Brans-Dicke cosmology framework. In the other hand, we suggest a correspondence
between the holographic dark energy scenario in flat universe and the phantom
dark energy model in framework of Brans-Dicke theory with potential.Comment: 10 pages, no figures, abstract and text extended, references adde
Structure of aluminum atomic chains
First-principles density functional calculations reveal that aluminum can
form planar chains in zigzag and ladder structures. The most stable one has
equilateral triangular geometry with four nearest neighbors; the other stable
zigzag structure has wide bond angle and allows for two nearest neighbors. An
intermediary structure has the ladder geometry and is formed by two strands.
All these planar geometries are, however, more favored energetically than the
linear chain. We found that by going from bulk to a chain the character of
bonding changes and acquires directionality. The conductance of zigzag and
linear chains is 4e^2/h under ideal ballistic conditions.Comment: modified detailed version, one new structure added, 4 figures,
modified figure1, 1 tabl
Cosmological Dynamics of Phantom Field
We study the general features of the dynamics of the phantom field in the
cosmological context. In the case of inverse coshyperbolic potential, we
demonstrate that the phantom field can successfully drive the observed current
accelerated expansion of the universe with the equation of state parameter
. The de-Sitter universe turns out to be the late time attractor
of the model. The main features of the dynamics are independent of the initial
conditions and the parameters of the model. The model fits the supernova data
very well, allowing for at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear
in Physical Review
Calibration of the length of a chain of single gold atoms
Using a scanning tunneling microscope or mechanically controllable break
junctions it has been shown that it is possible to control the formation of a
wire made of single gold atoms. In these experiments an interatomic distance
between atoms in the chain of ~3.6 Angstrom was reported which is not
consistent with recent theoretical calculations. Here, using precise
calibration procedures for both techniques, we measure length of the atomic
chains. Based on the distance between the peaks observed in the chain length
histogram we find the mean value of the inter-atomic distance before chain
rupture to be 2.6 +/- 0.2 A . This value agrees with the theoretical
calculations for the bond length. The discrepancy with the previous
experimental measurements was due to the presence of He gas, that was used to
promote the thermal contact, and which affects the value of the work function
that is commonly used to calibrate distances in scanning tunnelling microscopy
and mechanically controllable break junctions at low temperatures.Comment: 6 pages, 6 figure
Globally-Linked Vortex Clusters in Trapped Wave Fields
We put forward the existence of a rich variety of fully stationary vortex
structures, termed H-clusters, made of an increasing number of vortices nested
in paraxial wave fields confined by trapping potentials. However, we show that
the constituent vortices are globally linked, rather than products of
independent vortices. Also, they always feature a monopolar global wave front
and exist in nonlinear systems, such as Bose-Einstein condensates. Clusters
with multipolar global wave fronts are non-stationary or at best flipping.Comment: 4 pages, 5 PostScript figure
- …
