159 research outputs found

    Soma size distinguishes projection neurons from neurokinin 1 receptor-expressing interneurons in lamina I of the rat lumbar spinal dorsal horn

    Get PDF
    Lamina I of the spinal dorsal horn contains neurons that project to various brain regions, and ∼80% of these projection cells express the neurokinin 1 receptor (NK1r), the main receptor for substance P. Two populations of NK1r-immunoreactive neurons have been identified in lamina I: small weakly immunoreactive cells and large cells with strong immunolabelling [Cheunsuang O and Morris R (2000) Neuroscience 97:335–345]. The main aim of this study was to test the hypothesis that the large cells are projection neurons and that the small cells are interneurons. Projection neurons were identified by injection of tracers into the caudal ventrolateral medulla and lateral parabrachial area, and this was combined with immunostaining for NK1r. We found a bimodal size distribution for NK1r-immunoreactive neurons. The small cells (with somatic cross-sectional areas <200 μm2) showed weak immunoreactivity, while immunostaining intensity was variable among the large cells. Virtually all (99%) of the immunoreactive cells with soma areas >200 μm2 were retrogradely labelled, while only 10% of retrogradely labelled cells were smaller than this. Soma sizes of retrogradely labelled neurons that lacked NK1r did not differ from those of NK1r-expressing projection neurons. It has been suggested that a population of small pyramidal projection neurons that lack NK1r may correspond to cells activated by innocuous cooling, and we therefore assessed the morphology of retrogradely labelled cells that were not NK1r-immunoreactive. Fifteen percent of these were pyramidal, but these did not differ in size from pyramidal NK1r-immunoreactive projection neurons. These results confirm that large NK1r-immunoreactive lamina I neurons are projection cells, and suggest that the small cells are interneurons. Since almost all of the NK1r-immunoreactive cells with soma size >200 μm2 were retrogradely labelled, cells of this type can be identified as projection cells in anatomical studies

    A low number of introduced marine species in the tropics: A case study from Singapore

    Get PDF
    Non-indigenous marine species (NIMS) are being transported around the world by anthropogenic mechanisms, particularly by vessels in ballast water or as biofouling. A small subset of NIMS become invasive marine species (IMS) and can cause considerable damage to local marine ecosystems. Understanding where NIMS originate, how they are transported, and their effects in the new environments are crucial to the management of IMS. As one of the busiest ports in the world that handles tens of thousands of high invasion-risk vessels annually, Singapore is regarded as being at very high risk for the introduction of NIMS and IMS. However, a compilation of 3,650 marine invertebrates, fishes and plants revealed that only 22 species have been confirmed as NIMS. The results are consistent with a growing dataset that suggests biodiverse marine ecosystems in the tropical Indo-West Pacific are less susceptible to introductions than previously thought

    546 Results from Phase Ib study of tebentafusp (tebe) in combination with durvalumab (durva) and/or tremelimumab (treme) in metastatic cutaneous melanoma (mCM)

    Get PDF
    BackgroundTebe, a T cell receptor fused to an anti-CD3 effector, can redirect T cells to target gp100+ cells and in Ph3, demonstrated overall survival (OS) benefit as monotherapy in metastatic uveal melanoma. In Ph2, any tumor shrinkage (44% of patients) was a better predictor of OS than response rate. In Ph1, Tebe had monotherapy activity in mCM, also a gp100+ tumor, with 1-year OS ~74% in PD-1 naïve mCM. A Ph1 dose escalation of tebe with durva (anti-PD-L1) and/or treme (anti-CTLA4) was conducted in pre-treated mCM [NCT02535078], with nearly all patients having prior PD1-treatment, and where recently reported therapies have 1-yr OS of ~55%.MethodsHeavily pre-treated HLA-A2+ mCM patients received weekly IV tebe alone (Arm 4) or with increasing doses of durva and/or treme (Arm 1–3) administered IV monthly starting day 15 of each cycle. Primary objective was to identify RP2D of combination therapy. Secondary objectives included adverse events (AE) and efficacy.Results112 pts received ≥1 tebe dose. Median age was 59, 77% were ECOG 0, and 37% were BRAFm (of which 71% received prior BRAFi/MEKi). 91% of pts were 2L+, while 74% were 3L+. 103 (92%) received prior PD-1 inhibitor, of which 87% also received prior ipilimumab. 43 pts received tebe + durva (Arm 1), 13 received tebe + treme (Arm 2), 29 received triplet therapy (Arm 3), and 27 received tebe alone (Arm 4). Maximum target doses of tebe (68 mcg) + durva (20 mg/kg) and treme (1 mg/kg) were tolerated. MTD was not formally identified for any arm. Two DLTs occurred: prolonged grade 3 rash (Arm 1) and grade 2 diarrhea leading to treatment delay (Arm 2). Related AEs that were Grade ≥3 or led to discontinuations were: 44%/0% (Arm 1), 23%/0% (Arm2), 38%/7% (Arm3), 26%/4% (Arm 4). There were no treatment-related deaths.In prior PD-1 pts, tumor shrinkage occurred in 36% and 1-yr OS was 68%. Of 51 evaluable PD-1 resistant pts (best response CR/PR/SD to prior PD1), tumor shrinkage occurred in 28% and 1-yr OS was 73% (figure 1). In 35 evaluable PD-1 refractory pts (prior best response PD), tumor shrinkage occurred in 49% and 1-yr OS was 61%. For 38 prior PD-1 pts who received ≥10mg/kg durva, 1-yr OS was 81%.Abstract 546 Figure 1% tumor change from baseline in evaluable patients with known response to prior PD1 exposureConclusionsTebe with anti-PD-L1 and/or anti-CTLA4 had an acceptable safety profile. Tebe + durva demonstrated durable tumor shrinkage and promising 1-yr OS rates in prior-PD1 treated mCM relative to recent reports.Trial RegistrationNCT02535078Ethics ApprovalThe institutional review board or independent ethics committee at each center approved the trial. The trial was conducted in accordance with the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practice guidelines

    Draft Genome of the Filarial Nematode Parasite \u3ci\u3eBrugia malayi\u3c/i\u3e

    Get PDF
    Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design

    Tebentafusp in Combination With Durvalumab And/or Tremelimumab in Patients With Metastatic Cutaneous Melanoma: A Phase 1 Study

    Get PDF
    BACKGROUND: Immune checkpoint inhibitors have significantly improved outcomes in first line cutaneous melanoma. However, there is a high unmet need for patients who progress on these therapies and combination therapies are being explored to improve outcomes. Tebentafusp is a first-in-class gp100×CD3 ImmTAC bispecific that demonstrated overall survival (OS) benefit (HR 0.51) in metastatic uveal melanoma despite a modest overall response rate of 9%. This phase 1b trial evaluated the safety and initial efficacy of tebentafusp in combination with durvalumab (anti-programmed death ligand 1 (PDL1)) and/or tremelimumab (anti-cytotoxic T lymphocyte-associated antigen 4) in patients with metastatic cutaneous melanoma (mCM), the majority of whom progressed on prior checkpoint inhibitors. METHODS: In this open-label, multicenter, phase 1b, dose-escalation trial, HLA-A*02:01-positive patients with mCM received weekly intravenous tebentafusp with increasing monthly doses of durvalumab and/or tremelimumab starting day 15 of each cycle. The primary objective was to identify the maximum tolerated dose (MTD) or recommended phase 2 dose for each combination. Efficacy analyses were performed in all tebentafusp with durvalumab±tremelimumab treated patients with a sensitivity analysis in those who progressed on prior anti-PD(L)1 therapy. RESULTS: 85 patients were assigned to receive tebentafusp in combination with durvalumab (n=43), tremelimumab (n=13), or durvalumab and tremelimumab (n=29). Patients were heavily pretreated with a median of 3 prior lines of therapy, including 76 (89%) who received prior anti-PD(L)1. Maximum target doses of tebentafusp (68 mcg) alone or in combination with durvalumab (20 mg/kg) and tremelimumab (1 mg/kg) were tolerated; MTD was not formally identified for any arm. Adverse event profile was consistent with each individual therapy and there were no new safety signals nor treatment-related deaths. In the efficacy subset (n=72), the response rate was 14%, tumor shrinkage rate was 41% and 1-year OS rate was 76% (95% CI: 70% to 81%). The 1-year OS for triplet combination (79%; 95% CI: 71% to 86%) was similar to tebentafusp plus durvalumab (74%; 95% CI: 67% to 80%). CONCLUSION: At maximum target doses, the safety of tebentafusp with checkpoint inhibitors was consistent with safety of each individual therapy. Tebentafusp with durvalumab demonstrated promising efficacy in heavily pretreated patients with mCM, including those who progressed on prior anti-PD(L)1. TRIAL REGISTRATION NUMBER: NCT02535078

    Tebentafusp in combination with durvalumab and/or tremelimumab in patients with metastatic cutaneous melanoma: a phase 1 study

    Get PDF
    Background: Immune checkpoint inhibitors have significantly improved outcomes in first line cutaneous melanoma. However, there is a high unmet need for patients who progress on these therapies and combination therapies are being explored to improve outcomes. Tebentafusp is a first-in-class gp100×CD3 ImmTAC bispecific that demonstrated overall survival (OS) benefit (HR 0.51) in metastatic uveal melanoma despite a modest overall response rate of 9%. This phase 1b trial evaluated the safety and initial efficacy of tebentafusp in combination with durvalumab (anti-programmed death ligand 1 (PDL1)) and/or tremelimumab (anti-cytotoxic T lymphocyte-associated antigen 4) in patients with metastatic cutaneous melanoma (mCM), the majority of whom progressed on prior checkpoint inhibitors. Methods: In this open-label, multicenter, phase 1b, dose-escalation trial, HLA-A*02:01-positive patients with mCM received weekly intravenous tebentafusp with increasing monthly doses of durvalumab and/or tremelimumab starting day 15 of each cycle. The primary objective was to identify the maximum tolerated dose (MTD) or recommended phase 2 dose for each combination. Efficacy analyses were performed in all tebentafusp with durvalumab±tremelimumab treated patients with a sensitivity analysis in those who progressed on prior anti-PD(L)1 therapy. Results: 85 patients were assigned to receive tebentafusp in combination with durvalumab (n=43), tremelimumab (n=13), or durvalumab and tremelimumab (n=29). Patients were heavily pretreated with a median of 3 prior lines of therapy, including 76 (89%) who received prior anti-PD(L)1. Maximum target doses of tebentafusp (68 mcg) alone or in combination with durvalumab (20 mg/kg) and tremelimumab (1 mg/kg) were tolerated; MTD was not formally identified for any arm. Adverse event profile was consistent with each individual therapy and there were no new safety signals nor treatment-related deaths. In the efficacy subset (n=72), the response rate was 14%, tumor shrinkage rate was 41% and 1-year OS rate was 76% (95% CI: 70% to 81%). The 1-year OS for triplet combination (79%; 95% CI: 71% to 86%) was similar to tebentafusp plus durvalumab (74%; 95% CI: 67% to 80%). Conclusion: At maximum target doses, the safety of tebentafusp with checkpoint inhibitors was consistent with safety of each individual therapy. Tebentafusp with durvalumab demonstrated promising efficacy in heavily pretreated patients with mCM, including those who progressed on prior anti-PD(L)1. Trial registration number: NCT02535078

    Report from the fifth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative)

    Get PDF
    This is the report from the fifth meeting of the Harmonising Outcome Measures for Eczema initiative (HOME V). The meeting was held on 12–14 June 2017 in Nantes, France, with 81 participants. The main aims of the meeting were (i) to achieve consensus over the definition of the core domain of long-term control and how to measure it and (ii) to prioritize future areas of research for the measurement of the core domain of quality of life (QoL) in children. Moderated whole-group and small-group consensus discussions were informed by presentations of qualitative studies, systematic reviews and validation studies. Small-group allocations were performed a priori to ensure that each group included different stakeholders from a variety of geographical regions. Anonymous whole-group voting was carried out using handheld electronic voting pads according to predefined consensus rules. It was agreed by consensus that the long-term control domain should include signs, symptoms, quality of life and a patient global instrument. The group agreed that itch intensity should be measured when assessing long-term control of eczema in addition to the frequency of itch captured by the symptoms domain. There was no recommendation of an instrument for the core outcome domain of quality of life in children, but existing instruments were assessed for face validity and feasibility, and future work that will facilitate the recommendation of an instrument was agreed upon. The Harmonising Outcome Measures for Eczema (HOME) initiative is an international group working together to develop a core outcome set (COS) for clinical trials in eczema (synonymous with atopic eczema and atopic dermatitis). HOME is coordinated from the Centre of Evidence Based Dermatology, University of Nottingham, U.K. Participation in HOME is open to anyone with an interest in outcomes for eczema. A COS is the agreed upon minimum set of instruments that should be included in all clinical trials for a particular condition. Use of a COS does not preclude using other instruments; other domains and instruments can also be included to meet the specific requirements of individual trials. COS initiatives are active across many fields of medicine and should enable better synthesis of trial data and reduce selective outcome reporting bias. The HOME initiative follows the best current guidance on developing a COS. Four core domains have been identified: clinician-reported signs; patient-reported symptoms; quality of life; and long-term control. The core outcome measurement instruments for clinician-reported signs and patient-reported symptoms have been established: the Eczema Area and Severity Index (EASI) for measuring clinician reported signs was agreed on at the HOME III meeting, and the Patient-Oriented Eczema Measure (POEM) was chosen to measure patient-reported symptoms at the HOME IV meeting. This is a report from the fifth consensus meeting of the HOME initiative (HOME V), which was held on 12–14 June 2017 in Nantes, France. The local organizers were Sebastien Barbarot and Jean-Francois Stalder of Nantes University Hospital, France

    Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset

    Get PDF
    A search for neutrinoless double-β decay (0νββ) in Xe136 is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νββ and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of Xe136 0νββ has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νββ half-life sensitivity for this analysis is 5.0×1025 yr with a total Xe136 exposure of 234.1 kg yr. No statistically significant evidence for 0νββ is observed, leading to a lower limit on the 0νββ half-life of 3.5×1025 yr at the 90% confidence level
    corecore