1,043 research outputs found

    Land-sparing agriculture sustains higher levels of avian functional diversity than land sharing

    Get PDF
    The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land-use strategies: off-setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of 'wildlife-friendly' habitat features (land sharing). However, a key unanswered question is whether sparing or sharing farming would best conserve functional diversity, which can promote ecosystem stability and resilience to future land-use change. Focusing on bird communities in tropical cloud forests of the Colombian Andes, we test the performance of each strategy in conserving functional diversity. We show that multiple components of avian functional diversity in farmland are positively related to the proximity and extent of natural forest. Using landscape and community simulations, we also show that land-sparing agriculture conserves greater functional diversity and predicts higher abundance of species supplying key ecological functions than land sharing, with sharing becoming progressively inferior with increasing isolation from remnant forest. These results suggest low-intensity agriculture is likely to conserve little functional diversity unless large blocks of adjacent natural habitat are protected, consistent with land sparing. To ensure the retention of functionally diverse ecosystems, we urgently need to implement mechanisms for increasing farmland productivity whilst protecting spared land

    Fixed-Parameter Sensitivity Oracles

    Get PDF
    We combine ideas from distance sensitivity oracles (DSOs) and fixed-parameter tractability (FPT) to design sensitivity oracles for FPT graph problems. An oracle with sensitivity ff for an FPT problem Π\Pi on a graph GG with parameter kk preprocesses GG in time O(g(f,k)⋅poly(n))O(g(f,k) \cdot \textsf{poly}(n)). When queried with a set FF of at most ff edges of GG, the oracle reports the answer to the Π\Pi-with the same parameter kk-on the graph G−FG-F, i.e., GG deprived of FF. The oracle should answer queries in a time that is significantly faster than merely running the best-known FPT algorithm on G−FG-F from scratch. We mainly design sensitivity oracles for the kk-Path and the kk-Vertex Cover problem. Following our line of research connecting fault-tolerant FPT and shortest paths problems, we also introduce parameterization to the computation of distance preservers. We study the problem, given a directed unweighted graph with a fixed source ss and parameters ff and kk, to construct a polynomial-sized oracle that efficiently reports, for any target vertex vv and set FF of at most ff edges, whether the distance from ss to vv increases at most by an additive term of kk in G−FG-F.Comment: 19 pages, 1 figure, abstract shortened to meet ArXiv requirements; accepted at ITCS'2

    On the practicality of time-optimal two-qubit Hamiltonian simulation

    Get PDF
    What is the time-optimal way of using a set of control Hamiltonians to obtain a desired interaction? Vidal, Hammerer and Cirac [Phys. Rev. Lett. 88 (2002) 237902] have obtained a set of powerful results characterizing the time-optimal simulation of a two-qubit quantum gate using a fixed interaction Hamiltonian and fast local control over the individual qubits. How practically useful are these results? We prove that there are two-qubit Hamiltonians such that time-optimal simulation requires infinitely many steps of evolution, each infinitesimally small, and thus is physically impractical. A procedure is given to determine which two-qubit Hamiltonians have this property, and we show that almost all Hamiltonians do. Finally, we determine some bounds on the penalty that must be paid in the simulation time if the number of steps is fixed at a finite number, and show that the cost in simulation time is not too great.Comment: 9 pages, 2 figure

    Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars

    Get PDF
    This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The tests involve single non-rotating stars in stable equilibrium, non-rotating stars undergoing radial and quadrupolar oscillations, non-rotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, non-rotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasi-radial oscillations. The numerical evolutions have been carried out in full general relativity using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing (HRSC) treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date.Comment: 19 pages, 17 figure

    Long-term surgical anaesthesia with isoflurane in human habituated Nile Crocodiles

    Get PDF
    A suitable long-term anaesthetic technique was required for implantation of physiological sensors and telemetric devices in sub-adult Nile crocodiles (Crocodylus niloticus) to allow the collection of physiological data. Five Nile crocodiles with a median body mass of 24 kg were used. After manual capture, they were blindfolded and 0.2 mL (1 mg/mL) medetomidine was administered intramuscularly in four of the animals which had an estimated body mass between 20 kg and 30 kg. One crocodile with an estimated body mass of 50 kg received 0.5 mL. For induction, 5 mL propofol (10 mg/mL) was injected intravenously into the occipital sinus. Additional doses were given when required to ensure adequate anaesthesia. Anaesthesia was maintained with 1.5% isoflurane. Ventilation was controlled. Local anaesthesia was administered for surgical incision and external placement of the radio transmitter. Medetomidine was antagonised with atipamezole at the end of surgery. Median heart rate during surgery was 22 beats/min, at extubation 32 beats per min and 30 beats per min the following day at the same body temperature as under anaesthesia. Median body temperature of the animals increased from 27.3 °C to 27.9 °C during anaesthesia, as room temperature increased from 24.5 °C to 29.0 °C during surgery. Anaesthesia was successfully induced with intramuscular medetomidine and intravenous propofol and was maintained with isoflurane for the placement of telemetric implants. Intraoperative analgesia was supplemented with lidocaine infiltration. Perioperative physiological parameters remained stable and within acceptable clinical limits. Multiple factors appear to influence these variables during the recovery period, including residual anaesthetic effects, environmental temperature and physical activity.http://www.jsava.co.za/am2017Companion Animal Clinical Studie
    • …
    corecore