1,071 research outputs found

    Temporal dynamics of aquatic communities and implications for pond conservation

    Get PDF
    Conservation through the protection of particular habitats is predicated on the assumption that the conservation value of those habitats is stable. We test this assumption for ponds by investigating temporal variation in macroinvertebrate and macrophyte communities over a 10-year period in northwest England. We surveyed 51 ponds in northern England in 1995/6 and again in 2006, identifying all macrophytes (167 species) and all macroinvertebrates (221 species, excluding Diptera) to species. The alpha-diversity, beta-diversity and conservation value of these ponds were compared between surveys. We find that invertebrate species richness increased from an average of 29. 5 species to 39. 8 species between surveys. Invertebrate gamma-diversity also increased between the two surveys from 181 species to 201 species. However, this increase in diversity was accompanied by a decrease in beta-diversity. Plant alpha-, beta and gamma-diversity remained approximately constant between the two periods. However, increased proportions of grass species and a complete loss of charophytes suggests that the communities are undergoing succession. Conservation value was not correlated between sampling periods in either plants or invertebrates. This was confirmed by comparing ponds that had been disturbed with those that had no history of disturbance to demonstrate that levels of correlation between surveys were approximately equal in each group of ponds. This study has three important conservation implications: (i) a pond with high diversity or high conservation value may not remain that way and so it is unwise to base pond conservation measures upon protecting currently-speciose habitats; (ii) maximising pond gamma-diversity requires a combination of late and early succession ponds, especially for invertebrates; and (iii) invertebrate and plant communities in ponds may require different management strategies if succession occurs at varying rates in the two groups

    Stage progression and neurological symptoms in Trypanosoma brucei rhodesiense sleeping sickness: role of the CNS inflammatory response

    Get PDF
    Background: Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance. Methodology/Principal Findings: This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF. Conclusions: Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the CSF immunoglobulins and cytokines studied do not have sufficient sensitivity to be of clinical value

    Regulatory de novo mutations underlying intellectual disability

    Get PDF
    The genetic aetiology of a major fraction of patients with intellectual disability (ID) remains unknown. De novo mutations (DNMs) in protein-coding genes explain up to 40% of cases, but the potential role of regulatory DNMs is still poorly understood. We sequenced 63 whole genomes from 21 ID probands and their unaffected parents. In addition, we analysed 30 previously sequenced genomes from exome-negative ID probands. We found that regulatory DNMs were selectively enriched in fetal brain-specific enhancers as compared with adult brain enhancers. DNM-containing enhancers were associated with genes that show preferential expression in the prefrontal cortex. Furthermore, we identified recurrently mutated enhancer clusters that regulate genes involved in nervous system development (CSMD1, OLFM1, and POU3F3). Most of the DNMs from ID probands showed allele-specific enhancer activity when tested using luciferase assay. Using CRISPR-mediated mutation and editing of epigenomic marks, we show that DNMs at regulatory elements affect the expression of putative target genes. Our results, therefore, provide new evidence to indicate that DNMs in fetal brain-specific enhancers play an essential role in the aetiology of ID

    Identification of chemokine receptors as potential modulators of endocrine resistance in oestrogen receptor–positive breast cancers

    Get PDF
    Introduction Endocrine therapies target oestrogenic stimulation of breast cancer (BC) growth, but resistance remains problematic. Our aims in this study were (1) to identify genes most strongly associated with resistance to endocrine therapy by intersecting global gene transcription data from patients treated presurgically with the aromatase inhibitor anastrazole with those from MCF7 cells adapted to long-term oestrogen deprivation (LTED) (2) to assess the clinical value of selected genes in public clinical data sets and (3) to determine the impact of targeting these genes with novel agents. Methods Gene expression and Ki67 data were available from 69 postmenopausal women with oestrogen receptor–positive (ER+) early BC, at baseline and 2 weeks after anastrazole treatment, and from cell lines adapted to LTED. The functional consequences of target genes on proliferation, ER-mediated transcription and downstream cell signalling were assessed. Results By intersecting genes predictive of a poor change in Ki67 with those upregulated in LTED cells, we identified 32 genes strongly correlated with poor antiproliferative response that were associated with inflammation and/or immunity. In a panel of LTED cell lines, C-X-C chemokine receptor type 7 (CXCR7) and CXCR4 were upregulated compared to their wild types (wt), and CXCR7, but not CXCR4, was associated with reduced relapse-free survival in patients with ER+ BC. The CXCR4 small interfering RNA variant (siCXCR4) had no specific effect on the proliferation of wt-SUM44, wt-MCF7 and their LTED derivatives. In contrast, siCXCR7, as well as CCX733, a CXCR7 antagonist, specifically suppressed the proliferation of MCF7-LTED cells. siCXCR7 suppressed proteins associated with G1/S transition and inhibited ER transactivation in MCF7-LTED, but not wt-MCF7, by impeding association between ER and proline-, glutamic acid– and leucine-rich protein 1, an ER coactivator. Conclusions These data highlight CXCR7 as a potential therapeutic target warranting clinical investigation in endocrine-resistant BC

    Soybean Flour and Wheat Germ Proportions in Artificial Diet and Their Effect on the Growth Rates of the Tobacco Budworm, Heliothis virescens

    Get PDF
    Soybean flour and wheat germ are the two most important protein components of wheat germ-based insect artificial diets. The effect of modifying the proportion of these two ingredients in a Noctuidae-specific diet was investigated utilizing the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae), with the goal of developing a suboptimal diet that, without drastically affecting this insect's growth and reproductive rates, could manifest subtle negative effects in this insect. The original diet formula contained 2.51% protein. When the proportions of soybean flour and wheat germ were changed to 2.15% protein the net reproductive rate of the first generation was significantly lower. In the second generation, the net reproductive rate, development time, percent female survivorship, fertility, intrinsic rate of increase, finite rate of increase and female longevity were significantly lower in both the 2.15% and 2.26% protein diets. The survival rate of immatures to the adult stage was 1% in the 2.05% protein diet in the first generation. Interestingly, females exposed to these suboptimal diets produced a significantly higher number of eggs but the survival of their larvae was significantly reduced. It is evident from these results that modifications to the protein content and the nutrient composition profile of the original wheat germ-based insect artificial formula can be used to produce subtle negative effects on the growth of tobacco budworm

    Diet, physical activity, and adiposity in children in poor and rich neighbourhoods: a cross-sectional comparison

    Get PDF
    BACKGROUND: Obesity in Canadian children increased three-fold in twenty years. Children living in low-income neighborhoods exercise less and are more overweight than those living in more affluent neighborhoods after accounting for family socio-economic status. Strategies to prevent obesity in children have focused on personal habits, ignoring neighborhood characteristics. It is essential to evaluate diet and physical activity patterns in relation to socio-economic conditions to understand the determinants of obesity. The objective of this pilot study was to compare diet, physical activity, and the built environment in two Hamilton area elementary schools serving socio-economically different communities. METHODS: We conducted a cross-sectional study (November 2005-March 2006) in two public elementary schools in Hamilton, Ontario, School A and School B, located in low and high socioeconomic areas respectively. We assessed dietary intake, physical activity, dietary restraint, and anthropometric measures in consenting children in grades 1 and higher. From their parents we assessed family characteristics and walkability of the built environment. RESULTS: 160 children (n = 48, School A and n = 112, School B), and 156 parents (n = 43, School A and n = 113, School B) participated in this study. The parents with children at School A were less educated and had lower incomes than those at School B. The School A neighborhood was perceived to be less walkable than the School B neighborhood. Children at School A consumed more baked foods, chips, sodas, gelatin desserts, and candies and less low fat dairy, and dark bread than those at School B. Children at School A watched more television and spent more time in front of the computer than children studying at School B, but reported spending less time sitting on weekdays and weekends. Children at both schools were overweight but there was no difference in their mean BMI z-scores (School A = 0.65 versus School B = 0.81, p-value = 0.38). CONCLUSION: The determinants of overweight in children may be more complex than imagined. In future intervention programs researchers may consider addressing environmental factors, and customizing lifestyle interventions so that they are closer to community needs

    Structural and functional basis for RNA cleavage by Ire1

    Get PDF
    BACKGROUND: The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. RESULTS: This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing \u3e/=7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL) of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. CONCLUSIONS: Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L

    Influence of Caloric Restriction on Constitutive Expression of NF-κB in an Experimental Mouse Astrocytoma

    Get PDF
    Many of the current standard therapies employed for the management of primary malignant brain cancers are largely viewed as palliative, ultimately because these conventional strategies have been shown, in many instances, to decrease patient quality of life while only offering a modest increase in the length of survival. We propose that caloric restriction (CR) is an alternative metabolic therapy for brain cancer management that will not only improve survival but also reduce the morbidity associated with disease. Although we have shown that CR manages tumor growth and improves survival through multiple molecular and biochemical mechanisms, little information is known about the role that CR plays in modulating inflammation in brain tumor tissue.Phosphorylation and activation of nuclear factor κB (NF-κB) results in the transactivation of many genes including those encoding cycloxygenase-2 (COX-2) and allograft inflammatory factor-1 (AIF-1), both of which are proteins that are primarily expressed by inflammatory and malignant cancer cells. COX-2 has been shown to enhance inflammation and promote tumor cell survival in both in vitro and in vivo studies. In the current report, we demonstrate that the p65 subunit of NF-κB was expressed constitutively in the CT-2A tumor compared with contra-lateral normal brain tissue, and we also show that CR reduces (i) the phosphorylation and degree of transcriptional activation of the NF-κB-dependent genes COX-2 and AIF-1 in tumor tissue, as well as (ii) the expression of proinflammatory markers lying downstream of NF-κB in the CT-2A malignant mouse astrocytoma, [e.g. macrophage inflammatory protein-2 (MIP-2)]. On the whole, our date indicate that the NF-κB inflammatory pathway is constitutively activated in the CT-2A astrocytoma and that CR targets this pathway and inflammation.CR could be effective in reducing malignant brain tumor growth in part by inhibiting inflammation in the primary brain tumor

    Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal.

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aac6383Detailed geodetic imaging of earthquake ruptures enhances our understanding of earthquake physics and associated ground shaking. The 25 April 2015 moment magnitude 7.8 earthquake in Gorkha, Nepal was the first large continental megathrust rupture to have occurred beneath a high-rate (5-hertz) Global Positioning System (GPS) network. We used GPS and interferometric synthetic aperture radar data to model the earthquake rupture as a slip pulse ~20 kilometers in width, ~6 seconds in duration, and with a peak sliding velocity of 1.1 meters per second, which propagated toward the Kathmandu basin at ~3.3 kilometers per second over ~140 kilometers. The smooth slip onset, indicating a large (~5-meter) slip-weakening distance, caused moderate ground shaking at high frequencies (>1 hertz; peak ground acceleration, ~16% of Earth's gravity) and minimized damage to vernacular dwellings. Whole-basin resonance at a period of 4 to 5 seconds caused the collapse of tall structures, including cultural artifacts.The Nepal Geodetic Array was funded by internal funding to JPA from Caltech and DASE and by the Gordon and Betty Moore Foundation, through Grant GBMF 423.01 to the Caltech Tectonics Observatory and was maintained thanks to NSF Grant EAR 13-5136. Andrew Miner and the PAcific Northwest Geodetic Array (PANGA) at Central Washington University are thanked for technical assistance with the construction and operation of the Tribhuvan University-CWU network. Additional funding for the TU-CWU network came from United Nations Development Programme and Nepal Academy for Science and Technology. The high rate data were recovered thanks to a rapid intervention funded by NASA (US) and the Department of Foreign International Development (UK). We thank Trimble Navigation Ltd and the Vaidya family for supporting the rapid response as well. The accelerometer record at KATNP was provided by USGS. Research at UC Berkeley was funded by the Gordon and Betty Moore Foundation through grant GBMF 3024. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The GPS data were processed by ARIA (JPL) and the Scripps Orbit and Permanent Array Center. The effort at the Scripps Institution of Oceanography was funded by NASA grants NNX14AQ53G and NNX14AT33G. ALOS-2 data were provided under JAXA (Japan) PI Investigations 1148 and 1413. JPA thanks the Royal Society for support. We thank Susan Hough, Doug Given, Irving Flores and Jim Luetgert for contribution to the installation of this station
    corecore