65 research outputs found

    Modeling a mobile group recommender system for tourism with intelligent agents and gamification

    Get PDF
    To provide recommendations to groups of people is a complex task, especially due to the group’s heterogeneity and conflicting preferences and personalities. This heterogeneity is even deeper in occasional groups formed for predefined tour packages in tourism. Group Recommender Systems (GRS) are being designed for helping in situations like those. However, many limitations can still be found, either on their time-consuming configurations and excessive intrusiveness to build the tourists’ profile, or in their lack of concern for the tourists’ interests during the planning and tours, like feeling a greater liberty, diminish the sense of fear/being lost, increase their sense of companionship, and promote the social interaction among them without losing a personalized experience. In this paper, we propose a conceptual model that intends to enhance GRS for tourism by using gamification techniques, intelligent agents modeled with the tourists’ context and profile, such as psychological and socio-cultural aspects, and dialogue games between the agents for the post-recommendation process. Some important aspects of a GRS for tourism are also discussed, opening the way for the proposed conceptual model, which we believe will help to solve the identified limitations.This work was supported by the GrouPlanner Project (POCI-01-0145-FEDER-29178) and by National Funds through the FCT –Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the Projects UID/CEC/00319/2019 and UID/EEA/00760/2019

    Climate, history, society over the last millennium in southeast Africa

    Get PDF
    Climate variability has been causally linked to the transformation of society in pre-industrial southeast Africa. A growing critique, however, challenges the simplicity of ideas that identify climate as an agent of past societal change; arguing instead that the value of historical climate–society research lies in understanding human vulnerability and resilience, as well as how past societies framed, responded and adapted to climatic phenomena. We work across this divide to present the first critical analysis of climate–society relationships in southeast Africa over the last millennium. To achieve this, we review the now considerable body of scholarship on the role of climate in regional societal transformation, and bring forward new perspectives on climate–society interactions across three areas and periods using the theoretical frameworks of vulnerability and resilience. We find that recent advances in paleoclimatology and archaeology give weight to the suggestion that responses to climate variability played an important part in early state formation in the Limpopo valley (1000–1300), though evidence remains insufficient to clarify similar debates concerning Great Zimbabwe (1300–1450/1520). Written and oral evidence from the Zambezi-Save (1500–1830) and KwaZulu-Natal areas (1760–1828) nevertheless reveals a plurality of past responses to climate variability. These were underpinned by the organization of food systems, the role of climate-related ritual and political power, social networks, and livelihood assets and capabilities, as well as the nature of climate variability itself. To conclude, we identify new lines of research on climate, history and society, and discuss how these can more directly inform contemporary African climate adaptation challenges

    Interpreting malaria age-prevalence and incidence curves: a simulation study of the effects of different types of heterogeneity

    Get PDF
    ABSTRACT: BACKGROUND: Individuals in a malaria endemic community differ from one another. Many of these differences, such as heterogeneities in transmission or treatment-seeking behaviour, affect malaria epidemiology. The different kinds of heterogeneity are likely to be correlated. Little is known about their impact on the shape of age-prevalence and incidence curves. In this study, the effects of heterogeneity in transmission, treatment-seeking and risk of co-morbidity were simulated. METHODS: Simple patterns of heterogeneity were incorporated into a comprehensive individual-based model of Plasmodium falciparum malaria epidemiology. The different types of heterogeneity were systematically simulated individually, and in independent and co-varying pairs. The effects on age-curves for parasite prevalence, uncomplicated and severe episodes, direct and indirect mortality and first-line treatments and hospital admissions were examined. RESULTS: Different heterogeneities affected different outcomes with large effects reserved for outcomes which are directly affected by the action of the heterogeneity rather than via feedback on acquired immunity or fever thresholds. Transmission heterogeneity affected the age-curves for all outcomes. The peak parasite prevalence was reduced and all age-incidence curves crossed those of the reference scenario with a lower incidence in younger children and higher in older age-groups. Heterogeneity in the probability of seeking treatment reduced the peak incidence of first-line treatment and hospital admissions. Heterogeneity in co-morbidity risk showed little overall effect, but high and low values cancelled out for outcomes directly affected by its action. Independently varying pairs of heterogeneities produced additive effects. More variable results were produced for co-varying heterogeneities, with striking differences compared to independent pairs for some outcomes which were affected by both heterogeneities individually. CONCLUSIONS: Different kinds of heterogeneity both have different effects and affect different outcomes. Patterns of co-variation are also important. Alongside the absolute levels of different factors affecting age-curves, patterns of heterogeneity should be considered when parameterizing or validating models, interpreting data and inferring from one outcome to anothe

    Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression

    Get PDF
    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor

    Genetic Control of a Central Pattern Generator: Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2

    Get PDF
    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h2≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na+/K+-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo
    • …
    corecore