195 research outputs found

    Synthesis of Curcumin Derivatives and Analysis of Their Antitumor Effects in Triple Negative Breast Cancer (TNBC) Cell Lines

    Get PDF
    We analyzed antitumor effects of a series of curcumin analogues. Some of them were obtained by reaction of substitution involving the two phenolic OH groups of curcumin while the analogues with a substituent at C-4 was prepared following an original procedure that regards the condensation of benzenesulfenic acid onto the nucleophilic central carbon of the curcumin skeleton. We analyzed cytotoxic effects of such derivatives on two TNBC (triple negative breast cancer) cell lines, SUM 149 and MDA-MB-231, but only three of them showed an IC50 in a lower micromolar range with respect to curcumin. We also focused on these three derivatives that in both cell lines exhibited a higher or at least equivalent pro-apoptotic effect than curcumin. The analysis of molecular mechanisms of action of the curcumin derivatives under study has highlighted that they decreased NF-κB transcriptional factor activity, and consequently the expression of some NF-κB targets. Our data confirmed once again that curcumin may represent a very good lead compound to design analogues with higher antitumor capacities and able to overcome drug resistance with respect to conventional ones, even in tumors difficult to treat as TNBC

    Magnetic resonance imaging sequence evaluation of an MR Linac system; early clinical experience.

    Get PDF
    Objectives:To systematically identify the preferred magnetic resonance imaging (MRI) sequences following volunteer imaging on a 1.5 Tesla (T) MR-Linear Accelerator (MR Linac) for future protocol development. Methods:Non-patient volunteers were recruited to a Research and Ethics committee approved prospective MR-only imaging study on a 1.5T MR Linac system. Volunteers attended 1-3 imaging sessions that included a combination of mDixon, T1w, T2w sequences using 2-dimensional (2D) and 3-dimensional (3D) acquisitions. Each sequence was acquired over 2-7 minutes and reviewed by a panel of 3 observers to evaluate image quality using a visual grading analysis based on a 4-point Likert scale. Sequences were acquired and modified iteratively until deemed fit for purpose (online image matching or re-planning) and all observers agreed they were suitable in 3 volunteers. Results:26 volunteers underwent 31 imaging sessions of six general anatomical regions. Images were acquired in one or two of six general anatomical regions: male pelvis (n = 9), female pelvis (n = 4), chestwall/breast (n = 5), lung/oesophagus (n = 5), abdomen (n = 3) and head and neck (n = 5). Images were acquired using a pre-defined exam-card that on average, included six sequences (range 2-10), with a maximum scan time of approximately one hour. The majority of observers preferred T2-weighted sequences. The thorax teams were the only groups to prefer T1-weighted imaging. Conclusions:An iterative process identified sequence agreement in all anatomical regions. These sequences will now be evaluated in patient volunteers. Advances in knowledge:This manuscript is the first publication sharing the results of the first systematic selection of MRI sequences for use in on-board MRI-guided radiotherapy by end-users (therapeutic radiographers and clinical oncologists) in healthy volunteers

    Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation

    Get PDF
    Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality. Since its experimental discovery, graphene continues to attract enormous interest, in particular as a new kind of matter, in which electron transport is governed by a Dirac-like wave equation, and as a model system for studying electronic and phonon properties of other, more complex, graphitic materials[1-4]. Here, we uncover the constitutive relation of graphene and probe new physics of its optical phonons, by studying its Raman spectrum as a function of uniaxial strain. We find that the doubly degenerate E2g optical mode splits in two components, one polarized along the strain and the other perpendicular to it. This leads to the splitting of the G peak into two bands, which we call G+ and G-, by analogy with the effect of curvature on the nanotube G peak[5-7]. Both peaks red shift with increasing strain, and their splitting increases, in excellent agreement with first-principles calculations. Their relative intensities are found to depend on light polarization, which provides a useful tool to probe the graphene crystallographic orientation with respect to the strain. The singly degenerate 2D and 2D' bands also red shift, but do not split for small strains. We study the Gruneisen parameters for the phonons responsible for the G, D and D' peaks. These can be used to measure the amount of uniaxial or biaxial strain, providing a fundamental tool for nanoelectronics, where strain monitoring is of paramount importance[8, 9

    Local Optical Probe of Motion and Stress in a multilayer graphene NEMS

    Full text link
    Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micronic counterparts brings new effects including sensitivity to very low mass, resonant frequencies in the radiofrequency range, mechanical non-linearities and observation of quantum mechanical effects. An important issue of NEMS is the understanding of fundamental physical properties conditioning dissipation mechanisms, known to limit mechanical quality factors and to induce aging due to material degradation. There is a need for detection methods tailored for these systems which allow probing motion and stress at the nanometer scale. Here, we show a non-invasive local optical probe for the quantitative measurement of motion and stress within a multilayer graphene NEMS provided by a combination of Fizeau interferences, Raman spectroscopy and electrostatically actuated mirror. Interferometry provides a calibrated measurement of the motion, resulting from an actuation ranging from a quasi-static load up to the mechanical resonance while Raman spectroscopy allows a purely spectral detection of mechanical resonance at the nanoscale. Such spectroscopic detection reveals the coupling between a strained nano-resonator and the energy of an inelastically scattered photon, and thus offers a new approach for optomechanics

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    Aharonov-Bohm interferences from local deformations in graphene

    Full text link
    One of the most interesting aspects of graphene is the tied relation between structural and electronic properties. The observation of ripples in the graphene samples both free standing and on a substrate has given rise to a very active investigation around the membrane-like properties of graphene and the origin of the ripples remains as one of the most interesting open problems in the system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields that have become an ex- perimental reality after the suggestion that Landau levels can form associated to strain in graphene and the subsequent experimental confirmation. Here we propose a device to detect microstresses in graphene based on a scanning-tunneling-microscopy setup able to measure Aharonov-Bohm inter- ferences at the nanometer scale. The interferences to be observed in the local density of states are created by the fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material

    Etching and Narrowing of Graphene from the Edges

    Full text link
    Large scale graphene electronics desires lithographic patterning of narrow graphene nanoribbons (GNRs) for device integration. However, conventional lithography can only reliably pattern ~20nm wide GNR arrays limited by lithography resolution, while sub-5nm GNRs are desirable for high on/off ratio field-effect transistors (FETs) at room temperature. Here, we devised a gas phase chemical approach to etch graphene from the edges without damaging its basal plane. The reaction involved high temperature oxidation of graphene in a slightly reducing environment to afford controlled etch rate (\leq ~1nm/min). We fabricated ~20-30nm wide GNR arrays lithographically, and used the gas phase etching chemistry to narrow the ribbons down to <10nm. For the first time, high on/off ratio up to ~10^4 was achieved at room temperature for FETs built with sub-5nm wide GNR semiconductors derived from lithographic patterning and narrowing. Our controlled etching method opens up a chemical way to control the size of various graphene nano-structures beyond the capability of top-down lithography.Comment: 18 pages, 4 figures, to appear in Nature Chemistr

    Energy gaps, topological insulator state and zero-field quantum Hall effect in graphene by strain engineering

    Get PDF
    Among many remarkable qualities of graphene, its electronic properties attract particular interest due to a massless chiral character of charge carriers, which leads to such unusual phenomena as metallic conductivity in the limit of no carriers and the half-integer quantum Hall effect (QHE) observable even at room temperature [1-3]. Because graphene is only one atom thick, it is also amenable to external influences including mechanical deformation. The latter offers a tempting prospect of controlling graphene's properties by strain and, recently, several reports have examined graphene under uniaxial deformation [4-8]. Although the strain can induce additional Raman features [7,8], no significant changes in graphene's band structure have been either observed or expected for realistic strains of approx. 10% [9-11]. Here we show that a designed strain aligned along three main crystallographic directions induces strong gauge fields [12-14] that effectively act as a uniform magnetic field exceeding 10 T. For a finite doping, the quantizing field results in an insulating bulk and a pair of countercirculating edge states, similar to the case of a topological insulator [15-20]. We suggest realistic ways of creating this quantum state and observing the pseudo-magnetic QHE. We also show that strained superlattices can be used to open significant energy gaps in graphene's electronic spectrum
    • …
    corecore