56 research outputs found

    Cannabinoids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: a systematic review and meta-analysis

    Get PDF
    OBJECTIVES: To systematically review all available evidence on efficacy and safety of cannabinoids for treating neurogenic lower urinary tract dysfunction (NLUTD) in patients with multiple sclerosis (MS). PATIENTS AND METHODS: The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Studies were identified by electronic search of Cochrane register, Embase, Medline, Scopus (last search on 11 November 2016). RESULTS: After screening 8469 articles, two randomized controlled trials and one open label study enrolling a total of 426 patients, were included. Cannabinoids relevantly decreased incontinence episodes in all three studies. Pooling data showed mean difference in incontinence episodes per 24 hours to be -0.35 (95% confidence interval -0.46 to -0.24). Mild adverse events were frequent (38-100%), but only two patients (0.7%) reported a serious adverse event. CONCLUSIONS: Preliminary data imply, that cannabinoids might be an effective and safe treatment option for NULTD in patients with MS. However, evidence base is poor and more high-quality, well-designed, adequately powered and sampled studies are urgently needed to reach definitive conclusions. This article is protected by copyright. All rights reserved

    A genome-wide association study identifies protein quantitative trait loci (pQTLs)

    Get PDF
    There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al

    Improvement of composition of CdTe thin films during heat treatment in the presence of CdCl2

    Get PDF
    CdCl2 treatment is a crucial step in development of CdS/CdTe solar cells. Although this rocessing step has been used over a period of three decades, full understanding is not yet achieved. This paper reports the experimental evidence for improvement of composition of CdTe layers during CdCl2 treatment. This investigation makes use of four selected analytical techniques; Photo-electro-chemical (PEC) cell, X-ray diffraction (XRD), Raman spectroscopy and Scanning electron microscopy (SEM). CdTe layers used were electroplated using three Cd precursors; CdSO4, Cd(NO3)2 and CdCl2. Results show the improvement of stoichiometry of CdTe layers during CdCl2 treatment through chemical reaction between Cd from CdCl2 and elemental Te that usually precipitate during CdTe growth, due to its natural behaviour. XRD and SEM results show that the low-temperature (~85ºC) electroplated CdTe layers consist of ~(20-60) nm size crystallites, but after CdCl2 treatment, the layers show drastic recrystallisation with grains becoming a few microns in size. These CdCl2 treated layers are then comparable to high temperature grown CdTe layers by the size of grains

    Multiple Frequencies Sequential Coding for SSVEP-Based Brain-Computer Interface

    Get PDF
    BACKGROUND: Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has become one of the most promising modalities for a practical noninvasive BCI system. Owing to both the limitation of refresh rate of liquid crystal display (LCD) or cathode ray tube (CRT) monitor, and the specific physiological response property that only a very small number of stimuli at certain frequencies could evoke strong SSVEPs, the available frequencies for SSVEP stimuli are limited. Therefore, it may not be enough to code multiple targets with the traditional frequencies coding protocols, which poses a big challenge for the design of a practical SSVEP-based BCI. This study aimed to provide an innovative coding method to tackle this problem. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we present a novel protocol termed multiple frequencies sequential coding (MFSC) for SSVEP-based BCI. In MFSC, multiple frequencies are sequentially used in each cycle to code the targets. To fulfill the sequential coding, each cycle is divided into several coding epochs, and during each epoch, certain frequency is used. Obviously, different frequencies or the same frequency can be presented in the coding epochs, and the different epoch sequence corresponds to the different targets. To show the feasibility of MFSC, we used two frequencies to realize four targets and carried on an offline experiment. The current study shows that: 1) MFSC is feasible and efficient; 2) the performance of SSVEP-based BCI based on MFSC can be comparable to some existed systems. CONCLUSIONS/SIGNIFICANCE: The proposed protocol could potentially implement much more targets with the limited available frequencies compared with the traditional frequencies coding protocol. The efficiency of the new protocol was confirmed by real data experiment. We propose that the SSVEP-based BCI under MFSC might be a promising choice in the future

    Neuromodulation of lower urinary tract dysfunction

    No full text
    Neuromodulative procedures such as transcutaneous electrical nerve stimulation (TENS), transcutaneous/percutaneous tibial nerve stimulation (TTNS/PTNS), and sacral neuromodulation (SNM) are promising second-line treatments for refractory lower urinary tract dysfunction. Using these therapies, both storage and voiding disorders but also bowel dysfunction might be successfully treated. Although the mechanism of action of neuromodulation is not well understood, it seems to involve modulation of spinal cord reflexes and brain networks by peripheral afferents (genital/rectal, tibial and sacral afferents in the case of TENS, TTNS/PTNS, and SNM, respectively). Neuromodulative procedures might also be highly effective in the most desperate situations and further relevant developments are expected so that these innovative techniques will most likely become even more important in urology
    • …
    corecore