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Abstract

The use of Volterra filters in practical applications is often limited by their high computational burden. To cope with
this problem, many strategies for implementing Volterra filters with reduced complexity have been proposed in the
open literature. Some of these strategies are based on reduced-rank approaches obtained by defining a matrix of filter
coefficients and applying the singular value decomposition to such a matrix. Then, discarding the smaller singular
values, effective reduced-complexity Volterra implementations can be obtained. The application of this type of
approach to higher-order Volterra filters (considering orders greater than 2) is however not straightforward, which is
especially due to some difficulties encountered in the definition of higher-order coefficient matrices. In this context,
the present paper is devoted to the development of a novel reduced-rank approach for implementing higher-order
Volterra filters. Such an approach is based on a new form of Volterra kernel implementation that allows decomposing
higher-order kernels into structures composed only of second-order kernels. Then, applying the singular value
decomposition to the coefficient matrices of these second-order kernels, effective implementations for higher-order
Volterra filters can be obtained. Simulation results are presented aiming to assess the effectiveness of the proposed
approach.
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1 Introduction
The first challenge in filtering applications involving non-
linear systems is to choose an adequate model of the
nonlinear filter [1]. To meet this challenge, one impor-
tant filter characteristic that needs to be considered is
the trade-off between implementation complexity and
approximation capability. The well-known Volterra filter
[1] represents one extreme of this trade-off, since its uni-
versal approximation capability [2–4] comes at the cost of
a high computational complexity (which is due to the large
number of coefficients required for the implementation)
[1, 5–9]. In this context, one topic that has drawn attention
from researchers in the last decades is the development
of Volterra implementations having an enhanced trade-
off between computational complexity and approximation
capability.
Several different approaches have been proposed in

the open literature aiming to obtain reduced-complexity

*Correspondence: ebatista@ieee.org
LINSE—Circuits and Signal Processing Laboratory, Department of Electrical
and Electronics Engineering, Federal University of Santa Catarina, Campus
Universitário Trindade, Florianópolis, Brazil

implementations of Volterra filters. Some of these
approaches are based on sparse Volterra implementa-
tions that are obtained by zeroing the less significant
filter coefficients [9]. Examples of these implementa-
tions are the Volterra delay filter [10], the power fil-
ter [11], and general diagonally-pruned implementations
[12–14]. Other approaches combine interpolation and
sparse implementations for the sake of performance
[15–17]. Frequency-domain approaches also have been
used for obtaining effective reduced-complexity Volterra
implementations [18, 19]. All aforementioned approaches
are, in some sense, based on the use of predefined forms
of basis vectors for identifying and discarding the less
significant coefficients of a Volterra filter. In contrast,
the approaches from [20–25] involve the identification of
particular basis vectors that can then be exploited aim-
ing to reduce the complexity of a Volterra filter. These
approaches are typically based on the definition of coef-
ficient matrices, which are decomposed aiming to obtain
the basis vectors. The singular value decomposition is
often used for carrying out such a matrix decomposition
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and, as a result, the obtained basis vectors are singular vec-
tors of the coefficient matrix considered. Thus, discarding
the singular vectors related to the smaller singular val-
ues, effective reduced-complexity reduced-rank Volterra
implementations are obtained.
The first reduced-rank approaches used for imple-

menting Volterra filters are focused on second-order
Volterra kernels [20–22]. This is due to the fact that
the second-order Volterra coefficients have two indices,
which makes the definition of a second-order coeffi-
cient matrix a straightforward task. For higher-order fil-
ters, matrix-based reduced-rank approaches are usually
obtained by considering non-trivial definitions of (often
rectangular) coefficient matrices [24], which occasion-
ally lead to ineffective reduced-rank implementations. In
this context, the present paper is focused on the devel-
opment of a novel reduced-rank approach for imple-
menting higher-order Volterra filters. This approach is
based on a new form of Volterra kernel implementa-
tion that allows converting a higher-order Volterra ker-
nel into a structure composed of second-order kernels.
Then, applying second-order reduced-rank implementa-
tion strategies to such a structure, effective reduced-
rank implementations for higher-order Volterra filters can
be achieved.
The remainder of this paper is organized as described

in the following. Section 2 revisits the Volterra filters, dis-
cussing the redundancy-removed and matrix-form repre-
sentations of kernel input-output relationships. Also, in
Section 2, the reduced-rank implementations of Volterra
filters are briefly described. Section 3 is dedicated to the
contributions of this paper, comprising a new form of
kernel implementation and the description of the pro-
posed approach for implementing reduced-rank Volterra
filters. Finally, Sections 4 and 5 are dedicated to present
the experimental results and the concluding remarks,
respectively.
The mathematical notation considered in this paper is

based on the standard practice of using lowercase boldface
letters for vectors, uppercase boldface letters for matri-
ces, and both italic Roman and Greek letters for scalar
quantities. Moreover, superscript T stands for transpose,
⊗ represents the Kronecker product, and || · ||2 denotes
a quadratic norm. Additionally, underbars specify vari-
ables related to the redundancy-removed Volterra repre-
sentation and overbars indicate variables related to the
proposed approach.

2 Volterra filters and reduced-rank
implementations

A truncated Pth-order Volterra filter is composed of P
kernels, each corresponding to a certain order of polyno-
mial nonlinearity [1]. The output y(n) of such a filter is
obtained from

y(n) =
P∑

p=1
yp(n) (1)

with yp(n) representing the output of the pth-order kernel.
In its standard form, the input-output relationship of the
pth-order kernel is given by

yp(n) =
N−1∑

m1=0
· · ·

N−1∑

mp=0
hp(m1,m2,...,mp)

p∏

k=1
x(n − mk) (2)

with x(n) denoting the input signal and hp(m1,m2,...,mp),
the pth-order coefficients. In this work, the standard ker-
nels are assumed to be symmetric, which means that
hp(m1,m2,...,mp) = hp(m2,m1,...,mp) = · · · = hp(mp,mp−1,...,m1)

(i.e., all pth-order coefficients with permutated indices
have identical values). This assumption is used without
loss of generality, since any standard Volterra kernel can
be represented in symmetric form [1, 25].
The first-order kernel of the Volterra filter is a linear

kernel whose input-output relationship

y1(n) =
N−1∑

m1=0
hp(m1)x(n − m1) (3)

is that of a standard finite impulse response (FIR) filter
with N coefficients. Thus, (3) can be rewritten in a vector
form as

y1(n) = hT1 x1(n) (4)

with

h1 =[ h1(0) h1(1) · · · h1(N−1)]T (5)

and

x1(n) =[ x(n) x(n − 1) · · · x(n − N + 1)]T . (6)

The other kernels (with p ≥ 2) are nonlinear kernels
whose outputs depend on cross products of samples of
the input signal. As described in [1], the input-output rela-
tionships of the nonlinear kernels can also be expressed in
vector form. Thus, for the pth-order kernel, one has

yp(n) = hTp xp(n), (7)

where hp is the pth-order coefficient vector (composed of
coefficients hp(m1,m2,...,mp) withm1, . . . ,mp ranging from 0
to N − 1) and xp(n) = x1(n) ⊗ xp−1(n) is the pth-order
input vector.
Note, from (2) and (7), that the standard pth-order

Volterra kernel has one coefficient for each pth-order
cross product of input samples, resulting in a number of
coefficients given by

Np = Np. (8)

This number increases exponentially with both the mem-
ory size and the order of the kernel. As a consequence, the
computational cost for implementing a Volterra filter may
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become prohibitive even in applications involving kernels
with relatively small memory size.

2.1 Redundancy-removed implementation
The large number of coefficients required to implement
Volterra filters can be reduced by exploiting the redun-
dancy of part of the coefficients of the standard nonlinear
kernels [1, 15]. Such redundancy arises from the fact
that coefficients with permutated indices (e.g., h2(0,1) and
h2(1,0)) are multiplied by the same cross product of the
input signal (e.g., x(n)x(n − 1) in the case of h2(0,1) and
h2(1,0)) when the kernel output is evaluated. Thus, merg-
ing redundant coefficients into a single coefficient, the
input-output relationship of the pth-order kernel, given by
(2), can be rewritten as

yp(n) =
N−1∑

m1=0
· · ·

N−1∑

mp=mp−1

hp(m1,m2,...,mp)

p∏

k=1
x(n − mk) (9)

with hp(m1,m2,...,mp) denoting the pth-order coefficients of
the redundancy-removed kernel. Such representation of
the kernel input-output relationship, known as triangu-
lar [1] or even redundancy-removed [15] representation,
results in a number of coefficients given by

Np = (N + p − 1)!
(N − 1)! p!

. (10)

Moreover, it is important to highlight that the reduction
in the number of coefficients from (8) to (10) obtained
by using the redundancy-removed implementation comes
without loss of generality (i.e., a given kernel can be equiv-
alently implemented by using either the standard or the
redundancy-removed implementation).
As in the case of the standard Volterra kernels, the

input-output relationship of the redundancy-removed
ones can also be represented in vector form. Thereby, we
have [9]

yp(n) = hTp xp(n), (11)

where hp is the pth-order redundancy-removed coef-
ficient vector, which is composed of coefficients
hp(m1,m2,...,mp), and xp(n) = Lp[ xp−1(n) ⊗ x1(n)] is
the pth-order redundancy-removed input vector with
Lp denoting the pth-order elimination matrix [9]. For
instance, considering the second-order kernel, (9) results
in

y2(n) =
N−1∑

m1=0

N−1∑

m2=m1

h2(m1,m2)x(n−m1)x(n−m2), (12)

whereas (11) results in

y2(n) = hT2 x2(n) (13)

with
h2 =[ h2(0,0) h2(0,1) · · · h2(0,N−1)

h2(1,1) · · · h2(N−1,N−1)]
T (14)

and

x2(n) =[ x2(n) x(n)x(n − 1) · · · x(n)x(n − N + 1)
x2(n − 1) · · · x2(n − N + 1)] .

(15)

2.2 Matrix-form kernel representation
The input-output relationship of nonlinear Volterra ker-
nels can also be formulated as a function of coefficient
matrices instead of coefficient vectors. This type of rep-
resentation is especially suited for the development of
reduced-rank implementations, as will be shown in the
next section. For the standard second-order kernel, a
matrix-form representation can be obtained by consid-
ering m1 and m2 as coordinates of a Cartesian space to
define the following second-order coefficient matrix:

H2 =
⎡

⎢⎢⎢⎣

h2(0,0) h2(0,1) · · · h2(0,N−1)
h2(1,0) h2(1,1) · · · h2(1,N−1)

...
...

. . .
...

h2(N−1,0) h2(N−1,1) · · · h2(N−1,N−1)

⎤

⎥⎥⎥⎦ . (16)

Then, from (16), the input-output relationship of the
second-order kernel can be written as

y2(n) = xT1 (n)H2x1(n). (17)

In the case of the redundancy-removed second-order
kernel, the following coefficient matrix can be defined:

H2 =

⎡

⎢⎢⎢⎣

h2(0,0) h2(0,1) · · · h2(0,N−1)
0 h2(1,1) · · · h2(1,N−1)
...

...
. . .

...
0 0 · · · h2(N−1,N−1)

⎤

⎥⎥⎥⎦ . (18)

Now, considering (18), (13) can be rewritten as

y2(n) = xT1 (n)H2x1(n). (19)

The approach presented in [24] generalizes the matrix-
form representations from (16) to (19) for higher-order
kernels. Such an approach is based on defining an
Np1 × Np2 pth-order coefficient matrix Ĥp,p1,p2 with p =
p1 + p2. This matrix contains the Np coefficients of the
pth-order redundancy-removed kernel arranged in such a
way that the kernel output can be written as

yp(n) = xTp1(n)Ĥp,p1,p2xp2(n), (20)

where xp1(n) and xp2(n) are the redundancy-removed
input vectors with orders p1 and p2, respectively. It is
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important to mention that the number of coefficients Np
of the pth-order kernel is smaller than the number of
entries (Np1×Np2 ) of Ĥp,p1,p2 . As a result, several elements
of Ĥp,p1,p2 are in fact equal to zero [24].

2.3 Reduced-rank implementations
As described in [20–22, 24], approaches based on low-
rank approximations can be used for obtaining effective
reduced-complexity Volterra implementations. Most of
these approaches are based on using the singular value
decomposition along with matrix-form representations
of Volterra kernels. For instance, the approach used for
implementing second-order kernels described in [22] is
based on the application of the singular value decompo-
sition to the standard second-order coefficient matrix H2
given by (16). Since this matrix is symmetric, its left sin-
gular vectors are equal to its right singular vectors and, as
a result, one obtains

H2 =
N−1∑

k=0
λkh̃2,kh̃T2,k , (21)

where λk and h̃2,k are, respectively, the kth singular value
and the kth singular vector of H2. Now, substituting (21)
into (17), one gets

y2(n) =
N−1∑

k=0
λk[ xT1 (n)h̃2,k]2 . (22)

Note that xT1 (n)h̃2,k corresponds to the input-output rela-
tionship of an FIR filter with coefficient vector given by
h̃2,k . Thus, (22) is in fact the input-output relationship of
the structure shown in Fig. 1, which is a parallel struc-
ture of N FIR filters with their squared outputs multiplied
by the singular values of H2. Moreover, since the singu-
lar vectors h̃2,k (with k = 0, . . . ,N − 1) are unit vectors,
the branches of the structure from Fig. 1 involving small
values of λk can be disregarded, resulting in a reduc-
tion of computational complexity with low impact on the
implementation precision.

Fig. 1 Block diagram of the implementation of a second-order kernel
based on the singular value decomposition

The implementation depicted in Fig. 1 is based on the
standard matrix-form representation of the input-output
relationship of the second-order kernel. The redundancy-
removed matrix-form representation given by (19) can
also be used for obtaining a reduced-rank implementa-
tion. In this case, since the left and right singular vectors
are not the same (due to the fact thatH2 is not symmetric),
the resulting input-output relationship is

y2(n) =
N−1∑

k=0
λk[ xT1 (n)h̃2l,k] [ xT1 (n)h̃2r,k] (23)

with h̃2l,k representing the kth left singular vector of H2
and h̃2r,k denoting the kth right singular vector. By com-
paring (22) and (23), one can notice that the latter (which
is based on the redundancy-removed implementation)
results in a structure with higher computational cost than
the structure resulting from the former (based on the
standard representation). Thus, one verifies that the stan-
dard representation is in fact more advantageous than
the less costly redundancy-removed one for obtaining this
type of reduced-rank implementations of second-order
kernels.
In the case of higher-order kernels (with p ≥ 3), one

appealing approach for obtaining reduced-rank imple-
mentations is the one used in [24] to obtain the so-called
parallel-cascade Volterra structures. Such an approach is
based on the application of the singular value decomposi-
tion to the coefficient matrix of the general matrix-form
kernel representation given by (20). For instance, con-
sidering the case of a third-order kernel, (20) becomes

y3(n) = xT1 (n)Ĥ3,1,2x2(n) (24)
with x1(n) = x1(n). By applying the singular value decom-
position to Ĥ3,1,2, one obtains

Ĥ3,1,2 =
N−1∑

k=0
σkĥ3,1,kĥT3,2,k , (25)

where σk is the kth singular value of Ĥ3,1,2, ĥ3,1,k is the kth
left singular vector, and ĥ3,2,k is the kth right singular vec-
tor. Then, substituting (25) into (24) and manipulating the
resulting expression, one gets

y3(n) =
N−1∑

k=0
σk[ ĥT3,1,kx1(n)] [ ĥT3,2,kx2(n)] . (26)

From (4), one can notice that ĥT3,1,kx1(n) corresponds to
the filtering of the input signal by a first-order kernel (FIR
filter) with coefficient vector ĥ3,1,k . Similarly, considering
(13), one notices that ĥT3,2,kx2(n) corresponds to the fil-
tering of the input signal by a second-order kernel with
coefficient vector ĥ3,2,k . Thus, (26) in fact corresponds to
the structure depicted in Fig. 2, which is composed of a set
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Fig. 2 Block diagram of the parallel-cascade implementation of a
third-order kernel

of N branches, with the output of the kth branch given by
the product of the outputs of two kernels (a first-order ker-
nel and a second-order one), weighted by the kth singular
value σk of Ĥ3,1,2. As in the case of the structure of Fig. 1,
reduced-complexity reduced-rank Volterra implementa-
tions can be obtained from the parallel-cascade structure
of Fig. 2, removing the branches related to the smallest
singular values of Ĥ3,1,2. In addition, as mentioned in [24],
the second-order blocks of the structure of Fig. 2 can be
further decomposed by using reduced-rank approaches,
which allows a more detailed singular-value-dependent
kernel pruning. However, this pruning is not a straightfor-
ward task due to the hierarchical nature of the resulting
structure (i.e., it involves reduced-rank decompositions
with different levels of importance).

3 Novel reduced-rank approach for
implementing Volterra filters

This section is devoted to the development of a novel
reduced-rank approach for implementing Volterra filters.
To this end, a new strategy for implementing higher-order
kernels using a parallel structure composed of lower-order
kernels is first discussed. Then, such a strategy is exploited
along with the singular value decomposition to obtain the
proposed reduced-rank implementation approach.

3.1 Kernel implementation redesigned
In this section, the aim is to develop a new form of
Volterra kernel implementation that allows factorizing
higher-order kernels in terms of lower-order ones. For
the second-order kernel, such a type of implementation
is obtained by rewriting the second-order redundancy-
removed input-output relationship as

y2(n) =
N−1∑

m1=0
x(n−m1)

N−1∑

m2=m1

h2(m1,m2)x(n−m2). (27)

The rightmost summation term in (27) corresponds to
the input-output relationship of a first-order kernel (an
FIR filter) with memory size N − m1, coefficient vector

h̄2,m1 =[ h2(m1,m1) h2(m1,m1+1) · · · h2(m1,N−1)]
T (28)

and input vector

x̄2,m1(n) =[ x(n − m1) x(n − m1 − 1) · · ·
x(n − N + 1)]T .

(29)

Thus, (27) can be rewritten as

y2(n) =
N−1∑

m1=0
x(n − m1)h̄T2,m1 x̄2,m1(n). (30)

Note that, in (30), the output of the second-order ker-
nel is evaluated by summing the outputs of N first-order
kernels multiplied by delayed samples of the input sig-
nal. Therefore, (30) can be seen as a decomposition of the
second-order kernel into a parallel structure composed of
first-order kernels.
In the case of the third-order kernel, the redundancy-

removed input-output relationship can be written as

y3(n) =
N−1∑

m1=0
x(n − m1)×

N−1∑

m2=m1

N−1∑

m3=m2

h3(m1,m2,m3)x(n − m2)x(n − m3).

(31)

Now, considering (12), one can notice that the double
summation in (31) corresponds to the output of a second-
order kernel with coefficient vector

h̄3,m1 =[h3(m1,m1,m1) h3(m1,m1,m1+1) · · ·
h3(m1,m1,N−1) h3(m1,m1+1,m1+1) · · ·
h3(m1,N−1,N−1)]

T (32)

and input vector

x̄3,m1(n) =[ x2(n − m1) x(n − m1)x(n − m1 − 1) · · ·
x(n − m1)x(n − N + 1) x2(n − m1 − 1) · · ·
x2(n − N + 1)]T .

(33)

Consequently, from (13), (31) can be rewritten as

y3(n) =
N−1∑

m1=0
x(n − m1)h̄T3,m1 x̄3,m1(n) (34)

which corresponds to the decomposition of the third-
order kernel into a structure composed of second-order
kernels.



Batista and Seara EURASIP Journal on Advances in Signal Processing  (2016) 2016:118 Page 6 of 8

Similarly to (30) and (34), for the pth-order kernel, the
following input-output relationship can be obtained:

yp(n) =
N−1∑

m1=0
x(n − m1)h̄Tp,m1 x̄p,m1(n), (35)

where the product h̄Tp,m1 x̄p,m1(n) corresponds to the input-
output relationship of a (p− 1)th-order kernel with mem-
ory size N − m1. Thus, from (35), we can infer that any
pth-order kernel can be decomposed into N kernels with
order p − 1, as illustrated in Fig. 3.

3.2 Proposed approach
Aiming to develop the proposed reduced-rank approach
for implementing Volterra filters, we first consider that the
kernel implementation strategy introduced in Section 3.1
can be used to decompose any higher-order kernel (with
p ≥ 3) into a parallel structure composed exclusively of
second-order kernels. This decomposition is straightfor-
ward for the third-order kernel, since, by using p = 3
in (35), one obtains a structure composed of N second-
order kernels, as described by (31)–(34). In the case of the
fourth-order kernel, (35) can be used first for obtaining
a structure composed of N third-order kernels and then
for decomposing each of these third-order kernels into
second-order kernels. As a result, a structure composed
of N2 second-order kernels is obtained for the implemen-
tation of the fourth-order kernel. Following this rationale,
one can notice that, by using (35) to carry out successive
kernel decompositions, an implementation composed of
N (p−2) second-order kernels can always be obtained for a
pth-order kernel.
Now, the idea behind the proposed reduced-rank

approach for implementing Volterra filters is to exploit
the fact that any pth-order kernel can be decomposed
into a parallel structure of second-order kernels as previ-
ously described. Taking into account this fact, a reduced-
rank implementation for the pth-order kernel can be

Fig. 3 Block diagram of a pth-order kernel implementation using a
parallel structure composed of (p − 1)th-order kernels

obtained by applying, to each second-order kernel result-
ing from the kernel decomposition, the strategy used
for obtaining the reduced-rank implementation of Fig. 1
(see Section 2.3). Thus, one obtains a structure com-
posed of N (p−2) blocks, each having the form of the
structure of Fig. 1. Then, disregarding the branches of
these blocks related to the smaller singular values, a
reduced-complexity reduced-rank kernel implementation
is obtained. In this context, the proposed approach can be
summarized as follows:

i) Exploit the strategy described in Section 3.1 (see
Fig. 3) to obtain an implementation of the pth-order
kernel of interest in the form of a parallel structure
composed of second-order kernels.

ii) Use the standard matrix-form representation (see
Section 2.2) to represent all second-order kernels
that compose the kernel of interest.

iii) Obtain reduced-rank implementations of such
second-order kernels by using the singular value
decomposition as described in Section 2.3.

iv) Remove (prune) the branches of the resulting
structure related to the smaller singular values of the
involved second-order coefficient matrices.

The proposed reduced-rank approach for implement-
ing Volterra filters consists of the application of these
four steps to all kernels, which allows obtaining effective
reduced-complexity Volterra filter implementations.

4 Simulation results
This section aims to assess the effectiveness of the pro-
posed reduced-rank approach for obtaining reduced-
complexity implementations of Volterra filters. To this
end, the proposed approach is compared with the parallel-
cascade (PC) one from [24] in the context of the imple-
mentation of third-order and forth-order kernels whose
coefficients are known in advance. The effectiveness of
these approaches is assessed in terms of normalized mis-
alignment [26], which is defined as

M = 10 log10

(
||hk − hrr||22

||hk||22

)
(36)

with hk denoting the coefficient vector of the kernel to be
implemented, and hrr, the coefficient vector obtained by
using the reduced-rank approach. A hierarchical branch-
level pruning is applied to the parallel structures obtained
by using the approaches considered, which means that
one branch is removed at a time, with the branches
related to the smallest singular values removed first. After
the removal of each branch, both the normalized mis-
alignment and the number of required arithmetic oper-
ations are evaluated, resulting in the curves used here
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for comparing the different approaches. Markers are pre-
sented along these curves, indicating each evaluated pair
of normalized misalignment and number of operations
per sample.

4.1 Example 1: modeling of a third-order kernel
The third-order kernel considered in this example is
obtained from a system modeling experiment in which
a diode limiter circuit used in guitar distortion pedals
[27, 28] is modeled using an LMS-adapted Volterra
filter (with memory size Na = 10, sampling rate of
fs = 44.1 kHz, and white input signal). The PC and
the proposed reduced-rank approaches are used here
for implementing the third-order kernel of the Volterra
model obtained in such an experiment. As a result, the
curves of normalized misalignment as a function of the
number of operations per sample shown in Fig. 4 are
obtained. A vertical dotted line pointing out the number
of operations per sample required by the corresponding
redundancy-removed Volterra implementation (around
495 operations) is also included in this figure aiming to
establish a limit after which it is no longer interesting to
use reduced-rank implementations. One can notice from
Fig. 4 that the proposed approach outperforms the PC one
for the case considered here; since, a smaller normalized
misalignment is obtained for any given number of oper-
ations per sample. For instance, if a misalignment below
−15 dB is desired, a PC-based implementation would
require at least 280 operations per sample (i.e., a reduction
of about 43% with respect to the number of coefficients
of the redundancy-removed Volterra kernel), whereas an
implementation based on the proposed approach would
require only 139 operations per sample (a reduction of
almost 72%).

4.2 Example 2: modeling of a fourth-order kernel
The kernel considered in this example is similar to the
fourth-order satellite-system model used in [24]. Such a
model is obtained by using a cascade of a Butterworth

Proposed
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Fig. 4 Number of coefficients required by different reduced-rank
implementations of a third-order kernel

low-pass filter with a memoryless fourth-power nonlin-
earity and a Chebyshev low-pass filter. For the sake of
simplicity, we consider a version of this model in which
the Butterworth and Chebyshev IIR filters are replaced
by FIR versions obtained by truncating their impulse
responses to 30 samples. Then, a fourth-order kernel with
memory size 59 is obtained, which is again truncated to
memory size 30. As a result, this kernel has a total of
N4 = 40, 920 coefficients in its redundancy-removed
representation, requiring around 86,800 operations per
sample for its implementation. It is important to mention
that this kernel admits a symmetric representation for its
coefficient matrix Ĥ4,2,2. Consequently, the branches of
PC-based structures will be composed of a single second-
order kernel with its squared output multiplied by one
of the singular values of Ĥ4,2,2. The results obtained for
this example are shown in Fig. 5. For a better visualization
(due to the high density of the obtained points), we have
used one marker for each 30 points in the curve of the
proposed approach. From such results, one notices that
the reduced-rank approaches are capable of modeling the
considered fourth-order kernel with very good accuracy.
For instance, −60 dB of misalignment is obtained through
the proposed approach with around 12,520 operations per
sample, which corresponds to almost 86% of complexity
reduction. Moreover, Fig. 5 also shows that the proposed
approach outperforms the PC approach in terms of trade-
off between performance and complexity either for the
range of computational cost from 0 to almost 27,000 oper-
ations per sample or for the range of misalignment from 0
to about −120 dB.

5 Conclusions
In this paper, a novel reduced-rank approach for imple-
menting higher-order Volterra filters was introduced.
Such an approach is based on a new form of ker-
nel implementation that allows converting any higher-
order kernel into a structure composed exclusively of
second-order kernels. Then, exploiting the singular value
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Fig. 5 Number of coefficients required by different reduced-rank
implementations of a fourth-order kernel
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decomposition along with the coefficientmatrices of these
second-order kernels, a reduced-rank implementation for
the higher-order Volterra filter can be achieved. Numer-
ical simulation results were shown, confirming the effec-
tiveness of the proposed approach in obtaining reduced-
complexity implementations of Volterra filters.
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