10 research outputs found

    Tracking the Feeding Patterns of Tsetse Flies (Glossina Genus) by Analysis of Bloodmeals Using Mitochondrial Cytochromes Genes

    Get PDF
    Tsetse flies are notoriously difficult to observe in nature, particularly when populations densities are low. It is therefore difficult to observe them on their hosts in nature; hence their vertebrate species can very often only be determined indirectly by analysis of their gut contents. This knowledge is a critical component of the information on which control tactics can be developed. The objective of this study was to determine the sources of tsetse bloodmeals, hence investigate their feeding preferences. We used mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) gene sequences for identification of tsetse fly blood meals, in order to provide a foundation for rational decisions to guide control of trypanosomiasis, and their vectors. Glossina swynnertoni were sampled from Serengeti (Tanzania) and G. pallidipes from Kenya (Nguruman and Busia), and Uganda. Sequences were used to query public databases, and the percentage identities obtained used to identify hosts. An initial assay showed that the feeds were from single sources. Hosts identified from blood fed flies collected in Serengeti ecosystem, included buffaloes (25/40), giraffes (8/40), warthogs (3/40), elephants (3/40) and one spotted hyena. In Nguruman, where G. pallidipes flies were analyzed, the feeds were from elephants (6/13) and warthogs (5/13), while buffaloes and baboons accounted for one bloodmeal each. Only cattle blood was detected in flies caught in Busia and Uganda. Out of four flies tested in Mbita Point, Suba District in western Kenya, one had fed on cattle, the other three on the Nile monitor lizard. These results demonstrate that cattle will form an integral part of a control strategy for trypanosomiasis in Busia and Uganda, while different approaches are required for Serengeti and Nguruman ecosystems, where wildlife abound and are the major component of the tsetse fly food source

    X-Linked Genes and Risk of Orofacial Clefts: Evidence from Two Population-Based Studies in Scandinavia

    Get PDF
    Background: Orofacial clefts are common birth defects of complex etiology, with an excess of males among babies with cleft lip and palate, and an excess of females among those with cleft palate only. Although genes on the X chromosome have been implicated in clefting, there has been no association analysis of X-linked markers. Methodology/Principal Findings: We added new functionalities in the HAPLIN statistical software to enable association analysis of X-linked markers and an exploration of various causal scenarios relevant to orofacial clefts. Genotypes for 48 SNPs in 18 candidate genes on the X chromosome were analyzed in two population-based samples from Scandinavia (562 Norwegian and 235 Danish case-parent triads). For haplotype analysis, we used a sliding-window approach and assessed isolated cleft lip with or without cleft palate (iCL/P) separately from isolated cleft palate only (iCPO). We tested three statistical models in HAPLIN, allowing for: i) the same relative risk in males and females, ii) sex-specific relative risks, and iii) X-inactivation in females. We found weak but consistent associations with the oral-facial-digital syndrome 1 (OFD1) gene (formerly known as CXORF5) in the Danish iCL/P samples across all models, but not in the Norwegian iCL/P samples. In sex-specific analyses, the association with OFD1 was in male cases only. No analyses showed associations with iCPO in either the Norwegian or the Danish sample. Conclusions: The association of OFD1 with iCL/P is plausible given the biological relevance of this gene. However, the lack of replication in the Norwegian samples highlights the need to verify these preliminary findings in other large datasets. More generally, the novel analytic methods presented here are widely applicable to investigations of the role of X-linked genes in complex traits

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Seasonal variation in incidence of acute myocardial infarction in a sub-Arctic population: the Tromsø Study 1974-2004

    No full text
    Background: A seasonal pattern with higher winter morbidity and mortality has been reported for acute myocardial infarction (MI). The magnitude of the difference between peak and nadir season has been associated with latitude, but results are inconsistent. Studies of seasonal variation of MI in population-based cohorts, based on adjudicated MI cases, are few. We investigated the monthly and seasonal variation in first-ever nonfatal and fatal MI in the population of Tromsø in northern Norway, a region with a harsh climate and extreme seasonal variation in daylight exposure. Design: Prospective population-based cohort study. Methods: A total of 37 392 participants from the Tromsø Study enrolled between 1974 and 2001 were followed throughout 2004. Each incident case of MI was validated by the review of medical records and death certificates. MI incidence rates for months and seasons were analyzed for seasonal patterns with Poisson regression and the Cosinor procedure. All analyses were stratified by sex, age and smoking status. Results: A total of 1893 first-ever MIs were registered, of which 592 were fatal. There was an 11 % (95% confidence interval: 1.00–1.23, P = 0.04) increased risk of incident MI during winter (November-January) compared with nonwinter seasons, with no statistically significant interaction with sex, age, smoking or calendar year. Other seasonal modelling gave similar but not statistically significant results. Conclusion: We found a small increase in risk of incident MI during the darkest winter months. Populations living in sub-Arctic areas may be adapted to face climate exposure during winter through behavioural protection

    Disruption of an AP-2 alpha binding site in an IRF6 enhancer is associated with cleft lip

    Get PDF
    Previously we have shown that nonsyndromic cleft lip with or without cleft palate (NSCL/P)1 is strongly associated with SNPs in IRF6 (interferon regulatory factor 6)2. Here, we use multispecies sequence comparisons to identify a common SNP (rs642961, G4A) in a newly identified IRF6 enhancer. The A allele is significantly overtransmitted (P ¼ 1 1011) in families with NSCL/P, in particular those with cleft lip but not cleft palate. Further, there is a dosage effect of the A allele, with a relative risk for cleft lip of 1.68 for the AG genotype and 2.40 for the AA genotype. EMSA and ChIP assays demonstrate that the risk allele disrupts the binding site of transcription factor AP-2a and expression analysis in the mouse localizes the enhancer activity to craniofacial and limb structures. Our findings place IRF6 and AP-2a in the same developmental pathway and identify a high-frequency variant in a regulatory element contributing substantially to a common, complex disorder

    A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4

    Get PDF
    Case-parent trios were used in a genome-wide association study of cleft lip with and without cleft palate. SNPs near two genes not previously associated with cleft lip with and without cleft palate (MAFB, most significant SNP rs13041247, with odds ratio (OR) per minor allele = 0.704, 95% CI 0.635-0.778, P = 1.44 × 10-11; and ABCA4, most significant SNP rs560426, with OR = 1.432, 95% CI 1.292-1.587, P = 5.01 × 10-12) and two previously identified regions (at chromosome 8q24 and IRF6) attained genome-wide significance. Stratifying trios into European and Asian ancestry groups revealed differences in statistical significance, although estimated effect sizes remained similar. Replication studies from several populations showed confirming evidence, with families of European ancestry giving stronger evidence for markers in 8q24, whereas Asian families showed stronger evidence for association with MAFB and ABCA4. Expression studies support a role for MAFB in palatal development. © 2010 Nature America, Inc. All rights reserved
    corecore