17 research outputs found

    The impact of trans-catheter aortic valve replacement induced leftbundle branch block on cardiac reverse remodeling

    Get PDF
    Background Left bundle branch block (LBBB) is common following trans-catheter aortic valve replacement (TAVR) and has been linked to increased mortality, although whether this is related to less favourable cardiac reverse remodeling is unclear. The aim of the study was to investigate the impact of TAVR induced LBBB on cardiac reverse remodeling. Methods 48 patients undergoing TAVR for severe aortic stenosis were evaluated. 24 patients with new LBBB (LBBB-T) following TAVR were matched with 24 patients with a narrow post-procedure QRS (nQRS). Patients underwent cardiovascular magnetic resonance (CMR) prior to and 6 m post-TAVR. Measured cardiac reverse remodeling parameters included left ventricular (LV) size, ejection fraction (LVEF) and global longitudinal strain (GLS). Inter- and intra-ventricular dyssynchrony were determined using time to peak radial strain derived from CMR Feature Tracking. Results In the LBBB-T group there was an increase in QRS duration from 96 ± 14 to 151 ± 12 ms (P < 0.001) leading to inter- and intra-ventricular dyssynchrony (inter: LBBB-T 130 ± 73 vs nQRS 23 ± 86 ms, p < 0.001; intra: LBBB-T 118 ± 103 vs. nQRS 13 ± 106 ms, p = 0.001). Change in indexed LV end-systolic volume (LVESVi), LVEF and GLS was significantly different between the two groups (LVESVi: nQRS -7.9 ± 14.0 vs. LBBB-T -0.6 ± 10.2 ml/m2, p = 0.02, LVEF: nQRS +4.6 ± 7.8 vs LBBB-T -2.1 ± 6.9%, p = 0.002; GLS: nQRS -2.1 ± 3.6 vs. LBBB-T +0.2 ± 3.2%, p = 0.024). There was a significant correlation between change in QRS and change in LVEF (r = -0.434, p = 0.002) and between change in QRS and change in GLS (r = 0.462, p = 0.001). Post-procedure QRS duration was an independent predictor of change in LVEF and GLS at 6 months. Conclusion TAVR-induced LBBB is associated with less favourable cardiac reverse remodeling at medium term follow up. In view of this, every effort should be made to prevent TAVR-induced LBBB, especially as TAVR is now being extended to a younger, lower risk population

    Green Sturgeon Physical Habitat Use in the Coastal Pacific Ocean

    Get PDF
    The green sturgeon (Acipenser medirostris) is a highly migratory, oceanic, anadromous species with a complex life history that makes it vulnerable to species-wide threats in both freshwater and at sea. Green sturgeon population declines have preceded legal protection and curtailment of activities in marine environments deemed to increase its extinction risk. Yet, its marine habitat is poorly understood. We built a statistical model to characterize green sturgeon marine habitat using data from a coastal tracking array located along the Siletz Reef near Newport, Oregon, USA that recorded the passage of 37 acoustically tagged green sturgeon. We classified seafloor physical habitat features with high-resolution bathymetric and backscatter data. We then described the distribution of habitat components and their relationship to green sturgeon presence using ordination and subsequently used generalized linear model selection to identify important habitat components. Finally, we summarized depth and temperature recordings from seven green sturgeon present off the Oregon coast that were fitted with pop-off archival geolocation tags. Our analyses indicated that green sturgeon, on average, spent a longer duration in areas with high seafloor complexity, especially where a greater proportion of the substrate consists of boulders. Green sturgeon in marine habitats are primarily found at depths of 20–60 meters and from 9.5–16.0°C. Many sturgeon in this study were likely migrating in a northward direction, moving deeper, and may have been using complex seafloor habitat because it coincides with the distribution of benthic prey taxa or provides refuge from predators. Identifying important green sturgeon marine habitat is an essential step towards accurately defining the conditions that are necessary for its survival and will eventually yield range-wide, spatially explicit predictions of green sturgeon distribution

    Fine-scale distribution of pelagic fishes relative to a large urban pier

    No full text

    Numerical Modelling and Satellite Remote Sensing as Tools for Research and Management of Marine Fishery Resources

    No full text
    This chapter outlines the use of modelled and satellite remote sensing (SRS) data in supporting the research, technology-development and management of marine fishery resources. The value of such methods used in marine fisheries management is emphasized. State of art techniques in fisheries resource management utilizing numerical models, and SRS, separately and jointly, are described here. Numerical models are useful for studying fish and other aquatic invertebrate larval transport. SRS data are used to locate fish stocks, locate areas of reef stress and delineate areas of high productivity in the wake of cyclone paths. Coupling SRS with models helps to manage fishery resources on an ecosystem scale, generate potential fishing zones (PFZ), forecast ocean state (OSF), detect meso-scale features such as eddies and track cyclones threatening coastal resources.Modelled, SRS and in situ data sets in combination can be used in the estimation of potential fishery resources in the exclusive economic zone (EEZ), which in turn can help in fishing fleet management.Hence, there is a huge scope for application of numerical modelling and SRS in marine fisheries research and management

    Pseudomonas classification

    No full text
    corecore