7 research outputs found
Incidental memory of younger and older adults for objects encountered in a real world context
2013-2014 > Academic research: refereed > Publication in refereed journal201810_a bcmapublished_fina
The loss of ions from Venus through the plasma wake
Venus, unlike Earth, is an extremely dry planet although both began with similar masses, distances from the Sun, and presumably water inventories. The high deuterium-to-hydrogen ratio in the venusian atmosphere relative to Earth's also indicates that the atmosphere has undergone significantly different evolution over the age of the Solar System(1). Present-day thermal escape is low for all atmospheric species. However, hydrogen can escape by means of collisions with hot atoms from ionospheric photochemistry(2), and although the bulk of O and O-2 are gravitationally bound, heavy ions have been observed to escape(3) through interaction with the solar wind. Nevertheless, their relative rates of escape, spatial distribution, and composition could not be determined from these previous measurements. Here we report Venus Express measurements showing that the dominant escaping ions are O+, He+ and H+. The escaping ions leave Venus through the plasma sheet (a central portion of the plasma wake) and in a boundary layer of the induced magnetosphere. The escape rate ratios are Q(H+)/Q(O+) = 1.9; Q(He+)/Q(O+) = 0.07. The first of these implies that the escape of H+ and O+, together with the estimated escape of neutral hydrogen and oxygen, currently takes place near the stoichometric ratio corresponding to water.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62594/1/nature06434.pd