17 research outputs found

    Host Genetic Factors and Vaccine-Induced Immunity to HBV Infection: Haplotype Analysis

    Get PDF
    Hepatitis B virus (HBV) infection remains a significant health burden world-wide, although vaccines help decrease this problem. We previously identified associations of single nucleotide polymorphisms in several candidate genes with vaccine-induced peak antibody level (anti-HBs), which is predictive of long-term vaccine efficacy and protection against infection and persistent carriage; here we report on a haplotype-based analysis. A total of 688 SNPs from 117 genes were examined for a two, three and four sliding window haplotype analysis in a Gambian cohort. Analysis was performed on 197 unrelated individuals, 454 individuals from 174 families, and the combined sample (N = 651). Global and individual haplotype association tests were carried out (adjusted for covariates), employing peak anti-HBs level as outcome. Five genes (CD44, CD58, CDC42, IL19 and IL1R1) had at least one significant haplotype in the unrelated or family analysis as well as the combined analysis. Previous single locus results were confirmed for CD44 (combined global p = 9.1×10−5 for rs353644-rs353630-rs7937602) and CD58 (combined global p = 0.008 for rs1414275-rs11588376-rs1016140). Haplotypes in CDC42, IL19 and IL1R1 also associated with peak anti-HBs level. We have identified strong haplotype effects on HBV vaccine-induced antibody level in five genes, three of which, CDC42, IL19 and IL1R1, did not show evidence of association in a single SNP analyses and corroborated the majority of these effects in two datasets. The haplotype analysis identified associations with HBV vaccine-induced immunity in several new genes

    Microbial Symbionts in Insects Influence Down-Regulation of Defense Genes in Maize

    Get PDF
    Diabrotica virgifera virgifera larvae are root-feeding insects and significant pests to maize in North America and Europe. Little is known regarding how plants respond to insect attack of roots, thus complicating the selection for plant defense targets. Diabrotica virgifera virgifera is the most successful species in its genus and is the only Diabrotica beetle harboring an almost species-wide Wolbachia infection. Diabrotica virgifera virgifera are infected with Wolbachia and the typical gut flora found in soil-living, phytophagous insects. Diabrotica virgifera virgifera larvae cannot be reared aseptically and thus, it is not possible to observe the response of maize to effects of insect gut flora or other transient microbes. Because Wolbachia are heritable, it is possible to investigate whether Wolbachia infection affects the regulation of maize defenses. To answer if the success of Diabrotica virgifera virgifera is the result of microbial infection, Diabrotica virgifera virgifera were treated with antibiotics to eliminate Wolbachia and a microarray experiment was performed. Direct comparisons made between the response of maize root tissue to the feeding of antibiotic treated and untreated Diabrotica virgifera virgifera show down-regulation of plant defenses in the untreated insects compared to the antibiotic treated and control treatments. Results were confirmed via QRT-PCR. Biological and behavioral assays indicate that microbes have integrated into Diabrotica virgifera virgifera physiology without inducing negative effects and that antibiotic treatment did not affect the behavior or biology of the insect. The expression data and suggest that the pressure of microbes, which are most likely Wolbachia, mediate the down-regulation of many maize defenses via their insect hosts. This is the first report of a potential link between a microbial symbiont of an insect and a silencing effect in the insect host plant. This is also the first expression profile for a plant attacked by a root-feeding insect

    Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and -susceptible Tribolium castaneum

    Get PDF
    Background: Phosphine is a valuable fumigant to control pest populations in stored grains and grain products. However, recent studies indicate a substantial increase in phosphine resistance in stored product pests worldwide.Results: To understand the molecular bases of phosphine resistance in insects, we used RNA-Seq to compare gene expression in phosphine-resistant and susceptible laboratory populations of the red flour beetle, Tribolium castaneum. Each population was evaluated as either phosphine-exposed or no phosphine (untreated controls) in triplicate biological replicates (12 samples total). Pairwise analysis indicated there were eight genes differentially expressed between susceptible and resistant insects not exposed to phosphine (i.e., basal expression) or those exposed to phopshine (>8-fold expression and 90 % C.I.). However, 214 genes were differentially expressed among all four treatment groups at a statistically significant level (ANOVA, p < 0.05). Increased expression of 44 cytochrome P450 genes was found in resistant vs. susceptible insects, and phosphine exposure resulted in additional increases of 21 of these genes, five of which were significant among all treatment groups (p < 0.05). Expression of two genes encoding anti-diruetic peptide was 2- to 8-fold reduced in phosphine-resistant insects, and when exposed to phosphine, expression was further reduced 36- to 500-fold compared to susceptible. Phosphine-resistant insects also displayed differential expression of cuticle, carbohydrate, protease, transporter, and many mitochondrial genes, among others. Gene ontology terms associated with mitochondrial functions (oxidation biological processes, monooxygenase and catalytic molecular functions, and iron, heme, and tetrapyyrole binding) were enriched in the significantly differentially expressed dataset. Sequence polymorphism was found in transcripts encoding a known phosphine resistance gene, dihydrolipoamide dehydrogenase, in both susceptible and resistant insects. Phosphine-resistant adults also were resistant to knockdown by the pyrethroid deltamethrin, likely due to the increased cytochrome P450 expression.Conclusions: Overall, genes associated with the mitochondria were differentially expressed in resistant insects, and these differences may contribute to a reduction in overall metabolism and energy production and/or compensation in resistant insects. These data provide the first gene expression data on the response of phosphine-resistant and -susceptible insects to phosphine exposure, and demonstrate that RNA-Seq is a valuable tool to examine differences in insects that respond differentially to environmental stimuli.Peer reviewedEntomology and Plant Patholog

    Pleiotropy of cardiometabolic syndrome with obesity-related anthropometric traits determined using empirically derived kinships from the Busselton Health Study

    No full text
    Over two billion adults are overweight or obese and therefore at an increased risk of cardiometabolic syndrome (CMS). Obesity-related anthropometric traits genetically correlated with CMS may provide insight into CMS aetiology. The aim of this study was to utilise an empirically derived genetic relatedness matrix to calculate heritabilities and genetic correlations between CMS and anthropometric traits to determine whether they share genetic risk factors (pleiotropy). We used genome-wide single nucleotide polymorphism (SNP) data on 4671 Busselton Health Study participants. Exploiting both known and unknown relatedness, empirical kinship probabilities were estimated using these SNP data. General linear mixed models implemented in SOLAR were used to estimate narrow-sense heritabilities (h 2 ) and genetic correlations (r g ) between 15 anthropometric and 9 CMS traits. Anthropometric traits were adjusted by body mass index (BMI) to determine whether the observed genetic correlation was independent of obesity. After adjustment for multiple testing, all CMS and anthropometric traits were significantly heritable (h 2 range 0.18–0.57). We identified 50 significant genetic correlations (r g range: - 0.37 to 0.75) between CMS and anthropometric traits. Five genetic correlations remained significant after adjustment for BMI [high density lipoprotein cholesterol (HDL-C) and waist–hip ratio; triglycerides and waist–hip ratio; triglycerides and waist–height ratio; non-HDL-C and waist–height ratio; insulin and iliac skinfold thickness]. This study provides evidence for the presence of potentially pleiotropic genes that affect both anthropometric and CMS traits, independently of obesity

    Preterm birth and nativity among Black women with gestational diabetes in California, 2013–2017: a population-based retrospective cohort study

    No full text
    BackgroundDespite the disproportionate prevalence of gestational diabetes (GDM) and preterm birth (PTB) and their associated adverse perinatal outcomes among Black women, little is known about PTB among Black women with GDM. Specifically, the relationship between PTB by subtype (defined as indicated PTB and spontaneous PT labor) and severity, GDM, and nativity has not been well characterized. Here we examine the risk of PTB by severity (early &lt; 34 weeks, late 34 to 36 weeks) and early term birth (37 to 38 weeks) by nativity among Black women with GDM in California.MethodsThis retrospective cohort study used linked birth certificate and hospital discharge data for 8609 of the 100,691 self-identifying non-Hispanic Black women with GDM who had a singleton live birth between 20 and 44 weeks gestation in California in 2013-2017. Adjusted odds ratios (aOR) and 95% confidence intervals (CIs) were examine risks for PTB, by severity and subtype, and early term birth using multivariate regression modeling.ResultsApproximately, 83.9% of Black women with GDM were US-born and 16.1% were foreign-born. The overall prevalence of early PTB, late PTB, and early term birth was 3.8, 9.5, and 29.9%, respectively. Excluding history of prior PTB, preeclampsia was the greatest overall risk factor for early PTB (cOR = 6.7, 95%, CI 5.3 to 8.3), late PTB (cOR = 4.3, 95%, CI 3.8 to 5.0), and early term birth (cOR = 1.8, 95%, CI 1.6 to 2.0). There was no significant difference in the prevalence of PTB by subtypes and nativity (p = 0.5963). Overall, 14.2% of US- compared to 8.9% of foreign-born women had a PTB (early PTB: aOR = 0.56, 95%, CI 0.38 to 0.82; late PTB: aOR = 0.57, 95%, CI 0.45 to 0.73; early term birth: aOR = 0.67, 95%, CI 0.58 to 0.77).ConclusionsForeign-born status remained protective of PTB, irrespective of severity and subtype. Preeclampsia, PTB, and GDM share pathophysiologic mechanisms suggesting a need to better understand differences in perinatal stress, chronic disease, and vascular dysfunction based on nativity in future epidemiologic studies and health services research
    corecore