83 research outputs found

    Improving Fetal Head Contour Detection by Object Localisation with Deep Learning

    Get PDF
    Ultrasound-based fetal head biometrics measurement is a key indicator in monitoring the conditions of fetuses. Since manual measurement of relevant anatomical structures of fetal head is time-consuming and subject to inter-observer variability, there has been strong interest in finding automated, robust, accurate and reliable method. In this paper, we propose a deep learning-based method to segment fetal head from ultrasound images. The proposed method formulates the detection of fetal head boundary as a combined object localisation and segmentation problem based on deep learning model. Incorporating an object localisation in a framework developed for segmentation purpose aims to improve the segmentation accuracy achieved by fully convolutional network. Finally, ellipse is fitted on the contour of the segmented fetal head using least-squares ellipse fitting method. The proposed model is trained on 999 2-dimensional ultrasound images and tested on 335 images achieving Dice coefficient of97.73±1.3297.73 \pm 1.32. The experimental results demonstrate that the proposed deep learning method is promising in automatic fetal head detection and segmentation

    Prevalence of complaints of arm, neck and shoulder among computer office workers and psychometric evaluation of a risk factor questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complaints of Arm Neck and Shoulder (CANS) represent a wide range of complaints, which can differ in severity from mild, periodic symptoms to severe, chronic and debilitating conditions. They are thought to be associated with both physical and psychosocial risk factors. The measurement and identification of the various risk factors for these complaints is an important step towards recognizing (a) high risk subgroups that are relevant in profiling CANS; and (b) also for developing targeted and effective intervention plans for treatment. The purpose of the present study was to investigate the prevalence of CANS in a Dutch population of computer workers and to develop a questionnaire aimed at measuring workplace physical and psychosocial risk factors for the presence of these complaints.</p> <p>Methods</p> <p>To examine potential workplace risk factors for the presence of CANS, the Maastricht Upper Extremity Questionnaire (MUEQ), a structured questionnaire, was developed and tested among 264 computer office workers of a branch office of the national social security institution in the Netherlands. The MUEQ holds 95 items covering demographic characteristics, in addition to seven main domains assessing potential risk factors with regard to (1) work station, (2) posture during work, (3) quality of break time, (4) job demands, (5) job control, and (6) social support. The MUEQ further contained some additional questions about the quality of the work environment and the presence of complaints in the neck, shoulder, upper and lower arm, elbow, hand and wrist. The prevalence rates of CANS in the past year were computed. Further, we investigated the psychometric properties of the MUEQ (i.e. factor structure and reliability).</p> <p>Results</p> <p>The one-year prevalence rate of CANS indicated that 54% of the respondents reported at least one complaint in the arm, neck and/or shoulder. The highest prevalence rates were found for neck and shoulder symptoms (33% and 31% respectively), followed by hand and upper arm complaints (11% to 12%) and elbow, lower arm and wrist complaints (6% to 7%). The psychometric properties of the MUEQ were assessed using exploratory factor analysis which resulted in the identification of 12 factors. The calculation of internal consistency and cross validation provided evidence of reliability and lack of redundancy of items.</p> <p>Conclusion</p> <p>Neck and shoulder complaints are more frequently reported among Dutch computer workers than arm, elbow and hand complaints. The results further indicate that the MUEQ has satisfactory reliability and internal consistency when used to document CANS among computer workers in the Netherlands.</p

    Effects of a brief worksite stress management program on coping skills, psychological distress and physical complaints : a controlled trial

    Get PDF
    Objectives: To examine the effects of single-session, small-group stress management program on knowledge about stress, coping skills, and psychological and physical distress. Methods: A total of 300 employees from a company in western Japan were invited to participate in the study. Those who consented to enter the study were assigned to an intervention (n=149) or waiting list control group (n=151). Participants in the intervention group received a small-group stress management program. The program was primarily aimed at increasing knowledge about stress and improving coping skills. To investigate the intervention effect, change scores in outcome variables were calculated by subtracting the scores at pre-intervention from those at post-intervention (8 weeks after the pre-intervention survey). Next, the difference in the scores between groups was examined using analyses of covariance (ANCOVA) with the pre-intervention score as the covariate. Results: Favorable intervention effects were found on knowledge about stress and on coping skills (P < 0.001 and P=0.012, respectively) and adverse effects on psychological distress (P=0.022). However, this adverse effect on psychological distress did not exist among those who initially perceived higher levels of job control. Conclusion: The single-session stress management program was effective on improving knowledge about stress, and coping skills, where job control moderated the effect of the program on psychological distress

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Chromosome-Biased Binding and Gene Regulation by the Caenorhabditis elegans DRM Complex

    Get PDF
    DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA–binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.National Institutes of Health (U.S.) (grant GM24663)National Institutes of Health (U.S.) (grant DK068429)National Institutes of Health (U.S.) (grant GM082971)National Institutes of Health (U.S.) (grant GM076378

    Antenatal glucocorticoid treatment induces adaptations in adult midbrain dopamine neurons, which underpin sexually dimorphic behavioral resilience

    Get PDF
    We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16-19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders

    Völkisch und sozial? : Neonazistische Agitation gegen die neue EU-Freizügigkeit für Arbeitnehmerinnen

    Get PDF
    Wnt/β-catenin signalling pathway is crucial for the formation of many tissues and organs during development. In recent years, this pathway has also been found to regulate the biology of stem cells in the intestine and probably in other organs in adult life. Abnormal activation of Wnt/β-catenin signalling, which controls the expression of a high number of genes, is critical for the initiation and progression of most colorectal cancers. In line with this, the gene expression signature induced by activation of the Wnt/β-catenin pathway defines the intestinal stem cells present at the bottom of the crypts and also colon cancer stem cells. This supports the importance of inhibitors of the Wnt/β-catenin pathway as potential agents in colorectal cancer therapy. However, the complexity, wide activity in the organism modulating the biology of several cell types, and characteristics of this pathway have delayed the identification of suitable targets and so, the development of such inhibitors that are only now reaching the clinic.Peer reviewe
    • …
    corecore